Towards Mailbox Typing for Erlang

Simon Fowler « Duncan Paul Attard « Simon Gay < Phil Trinder

Stardust Meeting « 2023

Unuiversity

of Glasgow

VVVVVVVVVVVVVV

Common protocol errors (unexpected request)

id server() —
receive
{init, N} — 1id_server_Tloop(WN)
end.

id_server_loop(N) —
receive
{get, Client} —
Client ' {id, W},
id_server_ loop(WN + 1);
{init, _ } — error
end.

client() —

% Create server process.
Server = spawn {id_server, []},

% Inlitlallze server.
Server ! {init, 5},
Server ! {init, 5}, X
Server | {get, self},
receive

{id, Id} — print Id
end.

Common protocol errors (omitted reply)

id server() —
receive
{init, N} — 1id_server_Tloop(WN)
end.

id_server_loop(N) —
receive
{get, Client} —
Hient ' {id, W},
id_server_ loop(WN + 1);
{init, _} — error
end.

client() —

% Create server process.
Server = spawn {id_server, []},

% Initialize server.
Server ! {init, 5},

Server | {get, self},
receive

{id, Id} — print Id
end.

Common protocol errors (selt-deadlock)

id server() —
receive
{init, N} — 1id_server_Tloop(WN)
end.

id_server_loop(N) —
receive
{get, Client} —
Client ' {id, W},
id_server_ loop(WN + 1);
{init, _} — error
end.

client() —

% Create server process.
Server = spawn {id_server, []},

% Initialize server.
Server ! {init, 5},

Becerye! {get, self},
re¢egdyeId} — print Id
ené:}d, Id} — print Id
Sedver | {get, self}.

X

Common protocol errors (unsupported request)

id server() —
receive
{init, N} — 1id_server_Tloop(WN)
end.

id_server_loop(N) —
receive
{get, Client} —
Client ' {id, W},
id_server_ loop(WN + 1);
{init, _} — error
end.

client() —

% Create server process.
Server = spawn {id_server, []},

% Initialize server.
Server ! {init, 5},

Server | {gte, self}, X
receive

{id, Id} — print Id
end.

Our wish-list to catch protocol errors

Static
Farly error detection
Avoids defensive code

Annotated code
Self-contained information
Documents code
Compatible with other tools

Lightweight
Fast execution
Usable during development

Scalable
Applicable to large code bases

Current error-detection tool landscape

Lightweight <@ — T |- |own

Dialyzer Mailbox typing
(static typing) (behavioural typing)
v Code annotations v Code annotations
v’ Scalable v’ Scalable
X Not for concurrency v/ Targets concurrency
v’ Detects errors early v’ Detects errors early

X Less precise X Less precise

Concuerror
(systematic testing)

X Relies on test suites
X Less scalable

v/ Targets concurrency
X Detects errors late
v'More precise

Mailbox types for unordered interactions

Behavioural typlﬂg Capturing Process Interaction (De'Liguoro & Padovani “18)

Mailboxes: first-class entities with a type

Type = Capability + pattern Many writer, one reader

P Messages that must be sent | reference is sharable

?P Messages that mailbox can contain ? reference is not sharable

Pattern = commutative regular expression

Invariant on the mailbox contents
Captures out-of-order message deposits

Captures selective message reception

Receive one init and zero or more get messages = 7'init.get*"
Send one id message = !"id"

Receive zero or more get and one init message = 7'init.get*"

Aim: sends and receives must balance out

Challenge 1: Instantiating mailbox types to a PL

Process calculus Programming language
Shows a snapshot in a system state Specifies what is to be executed
Names declared statically upfront Names introduced via reduction
Names remain constant Names can be aliased
Difficulties

Seguenced expressions, nested evaluation contexts

Using names many times to send, but once to receive

Solution 1. Programming with mailbox types

Mailbox types for a core PL calculus: Pat

ICFP23 :
— Declarative type system
Special Delivery
i Corresponding algorithmic type system

SIMON FOWLER, University of Glasgow, UK
DUNCAN PAUL ATTARD, University of Glasgow, UK

FRANCISZEK SOW UL, University of Glasgow, UK OCaml| ty pe C hecker for Pat
SIMON J. GAY, University of Glasgow, UK
PHIL TRINDER, University of Glasgow, UK

Sufficiently expressive

Fast execution

Challenge 2: Applying mailbox typing to Erlang

First-class mailboxes
Explicitly created and freed

Process can own many mailboxes

Mailbox needed for receiving

Mailbox has a precise type

Erlang mailboxes
Tied to the lifecycle of processes
Processes own one mailbox

Mailbox implicit when receiving

Mailbox is untyped

Interface = isolates mailbox type + state

A set of messages that a mailbox can receive

Annotates process functions: -new or ~use

ID client interface:
1d messages

ﬁ

ID server interface:
1n1t and get messages

-spec id :: {id, int}.
-spec id_client :: 1id.

ST VR Logical 1d_server mailbox
-spec id_server() unit.

id server() —

assert(“init.getx"), -new id_client. Logical 1d_client mailbox
receive -spec client() — Uhit.
{init, M — id_server_loop(WN) client() —
end. Server = spawn {id_server, []},
SV LA R Thread id_server mailbox through RS2SR E TR RN
-spec id_server_loob(int) — unit. Server | {get, self},
id _server_loop(N) — assert(“id”),
assert(“getx"), receive
receive {id, Id} — print Id
{get, Client} — end.

Client ' {id, N},
id_server_loop(N + 1)
end.

Remove defensive error-handling code {init, _} — error

Limitations with typing one monolithic mailbox

D server:
Receives get, returns 1d

ﬁ

TS server:
Recelves now, returns ts

ﬁ

Client mailbox:
Type: id | ts (pollution)
Pattern: 1d . ts (grows)

Does not delineate conceptually unrelated messages

Tracking mailbox state can quickly become intractable

-spec id_rpc(id_server) — int.
id rpc(70) —
7o | {get, self},

receive
{id, Id} —
end.

Pattern grows

-spec 1d_server 1nit
-spec ts_server :: now.
-spec client id | ts.

get.

Type pollution

Patterns depends on order of

ts_asy(To) — 70 ! {now, se

-spec ts_get() — int.
ts _get() —
assert(“ts”),
receive
{ts,
end.

7s} — Ts

function invocations)
ient.

-spec client() — unit.
client() —
IdServer
/sServer

print ts_get().

spawn {id_server,
spawn {ts_server,

Mailbox types: induce structured
communication

Organising the Erlang mailbox logically

Gives a projected view of an otherwise monolithic mailbox

Isolates message types
Minimises type pollution

Types are more precise

solates mailbox state

Patterns are localised

Reasoning becomes compositional

-new id_client.
-spec id_rpc(id_sel
id rpc(70) —

7o ! {get, self}
assert(“idis" qENele:INgENelallgle
receive

{id, Id} — Id
end.

Logical 1d_client mailbox

-spec ts_asy(ts_server) — unit.
ts_asy(To) — 70 ! {now, self}.

-spec ts_get() — int.
ts _get() —
assert(“ts”),
receive
{ts, 7s} — Ts
end.

-spec id_server :: init | get.
-spec ts_server :: now.

Two interfaces

-spec client() —
client() —
IdServer
/sServer

Logical ts_client mailbox
it.

spawn {id_server, ..
spawn {ts_server,

print id_rpc(IdServer),
print ts_get().

Towards mailbox typing for Erlang

Pat errors

Status summary

In progress
Design with Erlang typespecs
Annotated Erlang IR

Refinement of Pat

Formalised IR — Pat translation

Next
mplement IR — Pat translation

mplement error translation

~ormalise Erlang — IR translation

mplement Erlang — IR translation

Why mailbox typing?

Actors
Type the mailbox contents, not the process interactions

Fits asynchrony: out-of-order mailbox reading and writing

Fits asymmetric interaction: many writers, one reader paradigm

Frlang
Overlay a structure on top of a monolithic mailbox

Document communication between processes

