
Towards Mailbox Typing for Erlang

Simon Fowler • Duncan Paul Attard • Simon Gay • Phil Trinder

Stardust Meeting • 2023

client() ⟶

 % Create server process.
 Server = spawn {id_server, []},

 % Initialize server.
 Server ! {init, 5},
 Server ! {init, 5},
 Server ! {get, self},
 receive
 {id, Id} ⟶ print Id
 end.

Common protocol errors (unexpected request)

id_server() ⟶
 receive
 {init, N} ⟶ id_server_loop(N)
 end.

id_server_loop(N) ⟶
 receive
 {get, Client} ⟶
 Client ! {id, N},
 id_server_loop(N + 1);
 {init, _} ⟶ error
 end.

client() ⟶

 % Create server process.
 Server = spawn {id_server, []},

 % Initialize server.
 Server ! {init, 5},

 Server ! {get, self},
 receive
 {id, Id} ⟶ print Id
 end.

Common protocol errors (omitted reply)

id_server() ⟶
 receive
 {init, N} ⟶ id_server_loop(N)
 end.

id_server_loop(N) ⟶
 receive
 {get, Client} ⟶
 Client ! {id, N},
 id_server_loop(N + 1);
 {init, _} ⟶ error
 end.

client() ⟶

 % Create server process.
 Server = spawn {id_server, []},

 % Initialize server.
 Server ! {init, 5},

 Server ! {get, self},
 receive
 {id, Id} ⟶ print Id
 end.Server ! {get, self}.

receive
 {id, Id} ⟶ print Id
end,

Common protocol errors (self-deadlock)

id_server() ⟶
 receive
 {init, N} ⟶ id_server_loop(N)
 end.

id_server_loop(N) ⟶
 receive
 {get, Client} ⟶
 Client ! {id, N},
 id_server_loop(N + 1);
 {init, _} ⟶ error
 end.

client() ⟶

 % Create server process.
 Server = spawn {id_server, []},

 % Initialize server.
 Server ! {init, 5},

 Server ! {get, self},
 receive
 {id, Id} ⟶ print Id
 end.

Common protocol errors (unsupported request)

id_server() ⟶
 receive
 {init, N} ⟶ id_server_loop(N)
 end.

id_server_loop(N) ⟶
 receive
 {get, Client} ⟶
 Client ! {id, N},
 id_server_loop(N + 1);
 {init, _} ⟶ error
 end.

Server ! {gte, self},

Lightweight
Fast execution
Usable during development

Static
Early error detection
Avoids defensive code

Our wish-list to catch protocol errors

Annotated code
Self-contained information
Documents code
Compatible with other tools

Scalable
Applicable to large code bases

Current error-detection tool landscape

Dialyzer
(static typing)

üCode annotations
üScalable
✘Not for concurrency
üDetects errors early
✘Less precise

Concuerror
(systematic testing)

✘Relies on test suites
✘Less scalable
üTargets concurrency
✘Detects errors late
üMore precise

Full-blownLightweight

Mailbox typing
(behavioural typing)

üCode annotations
üScalable
üTargets concurrency
üDetects errors early
✘Less precise

Mailbox types for unordered interactions

Behavioural typing capturing process interaction (De'Liguoro & Padovani ‘18)

Mailboxes: first-class entities with a type

Type = Capability + pattern
!P Messages that must be sent
?P Messages that mailbox can contain

Many writer, one reader
! reference is sharable

? reference is not sharable

Pattern = commutative regular expression

Invariant on the mailbox contents
Captures out-of-order message deposits
Captures selective message reception

Receive one init and zero or more get messages ⇒ ?"init.get*"

Send one id message ⇒ !"id"

Receive zero or more get and one init message ⇒ "init.get*"⇒ ?"init.get*"

Aim: sends and receives must balance out

Challenge 1: Instantiating mailbox types to a PL

Difficulties
Sequenced expressions, nested evaluation contexts
Using names many times to send, but once to receive

Process calculus
Shows a snapshot in a system state
Names declared statically upfront
Names remain constant

Programming language
Specifies what is to be executed
Names introduced via reduction
Names can be aliased

Solution 1: Programming with mailbox types

Mailbox types for a core PL calculus: Pat
Declarative type system
Corresponding algorithmic type system
OCaml type checker for Pat
Sufficiently expressive
Fast execution

ICFP’23

Challenge 2: Applying mailbox typing to Erlang

First-class mailboxes
Explicitly created and freed
Process can own many mailboxes
Mailbox needed for receiving
Mailbox has a precise type

Erlang mailboxes
Tied to the lifecycle of processes
Processes own one mailbox
Mailbox implicit when receiving
Mailbox is untyped

Interface = isolates mailbox type + state

A set of messages that a mailbox can receive
Annotates process functions: -new or -use

-spec id :: {id, int}.
-spec id_client :: id.
-spec init :: {init, int}.
-spec get :: {get, id_client}.
-spec id_server :: init | get.

ID client interface:
id messages

ID server interface:
init and get messages

-new id_client.
-spec client() ⟶ unit.
client() ⟶
 Server = spawn {id_server, []},

 Server ! {init, 5},
 Server ! {get, self},
 assert(“id”),
 receive
 {id, Id} ⟶ print Id
 end.

-new id_server.
-spec id_server() ⟶ unit.
id_server() ⟶
 assert(“init.get*”),
 receive
 {init, N} ⟶ id_server_loop(N)
 end.

-use id_server.
-spec id_server_loop(int) ⟶ unit.
id_server_loop(N) ⟶
 assert(“get*”),
 receive
 {get, Client} ⟶
 Client ! {id, N},
 id_server_loop(N + 1)
 end.

Remove defensive error-handling code {init, _} ⟶ error

Logical id_server mailbox

Logical id_client mailbox

Thread id_server mailbox through

Limitations with typing one monolithic mailbox

Does not delineate conceptually unrelated messages
Tracking mailbox state can quickly become intractable

Client mailbox:
Type: id
Pattern: id

ID server:
Receives get, returns id

TS server:
Receives now, returns ts

|ts (pollution)
.ts (grows)

-spec id_rpc(id_server) ⟶ int.
id_rpc(To) ⟶
 To ! {get, self},
 assert(“id.ts”),
 receive
 {id, Id} ⟶ Id
 end.

-spec ts_asy(ts_server) ⟶ unit.
ts_asy(To) ⟶ To ! {now, self}.

-spec ts_get() ⟶ int.
ts_get() ⟶
 assert(“ts”),
 receive
 {ts, Ts} ⟶ Ts
 end.

-new client.
-spec client() ⟶ unit.
client() ⟶
 IdServer = spawn {id_server, …
 TsServer = spawn {ts_server, …

 ts_asy(TsServer), % Async.
 print id_rpc(IdServer), % Sync.
 print ts_get().

-spec id_server :: init | get.
-spec ts_server :: now.
-spec client :: id | ts. Type pollution

Pattern grows

Reasoning not local

print id_rpc(IdServer), % Sync.
 ts_asy(TsServer), % Async.

assert(“id”),

Patterns depends on order of
function invocations

Mailbox types: induce structured
communication

Organising the Erlang mailbox logically

Gives a projected view of an otherwise monolithic mailbox

Isolates message types
Minimises type pollution
Types are more precise

Isolates mailbox state
Patterns are localised
Reasoning becomes compositional

-new id_client.
-spec id_rpc(id_server) ⟶ int.
id_rpc(To) ⟶
 To ! {get, self},
 assert(“id.ts”),
 receive
 {id, Id} ⟶ Id
 end.

-spec ts_asy(ts_server) ⟶ unit.
ts_asy(To) ⟶ To ! {now, self}.

-spec ts_get() ⟶ int.
ts_get() ⟶
 assert(“ts”),
 receive
 {ts, Ts} ⟶ Ts
 end.

-new client.
-spec client() ⟶ unit.
client() ⟶
 IdServer = spawn {id_server, …
 TsServer = spawn {ts_server, …

 ts_asy(TsServer), % Async.
 print id_rpc(IdServer), % Sync.
 print ts_get().

-spec id_server :: init | get.
-spec ts_server :: now.
-spec client :: id | ts.

Two interfaces
-spec id_client :: id.
-spec ts_client :: ts.

-new ts_client.

Logical id_client mailbox

assert(“id”), Local reasoning

Iso
late

d m
ailb

oxe
s

Logical ts_client mailbox

Towards mailbox typing for Erlang

Pat type
checker

State-passing
translation

Annotated
Erlang IR

Erlang source
IR annotation

Pat source

Type-speced
Erlang source

Error translation
Erlang errors Pat errors

Status summary

In progress
Design with Erlang typespecs
Annotated Erlang IR
Refinement of Pat
Formalised IR ⟶ Pat translation

Next
Implement IR ⟶ Pat translation
Implement error translation
Formalise Erlang ⟶ IR translation
Implement Erlang ⟶ IR translation

Why mailbox typing?

Actors
Type the mailbox contents, not the process interactions
Fits asynchrony: out-of-order mailbox reading and writing
Fits asymmetric interaction: many writers, one reader paradigm

Erlang
Overlay a structure on top of a monolithic mailbox
Document communication between processes

