Event-Driven Multiparty
Session Actors

Simon Fowler & Raymond Hu
HOPE, 4t September 2023

L . . oo
[J%Iélﬁesgé% v Queen Mary

University of London

VVVVVVVVVVVV

Actor Languages

A
e Actor languages: communication-

centric languages

e Communication via licit
ERLANG . eXplict
message passing

* Popular for writing reliable
a a distributed code
* Power WhatsApp, with >1B users

» Support data locality and idioms
such as supervision hierarchies

Communication Errors

Communication Mismatch

e Receiving an unexpected message / message with unexpected payload
type

Deadlock

» Cyclic dependencies meaning communication cannot proceed

Livelock

« Communication in one part of the system starves communication in
another part of the system

Multiparty Session Types

Global type
Project A)Iject\ Project
(Alice) (Bob) (Carol)

- | ~
Local type Local type Local type
(Alice) (Bob) (Carol)

I | I
Typecheck / Typecheck / Typecheck /
Monitor Monitor Monitor
| | |
Process Process Process 3
(Alice) (Bob) (Carol)

» Session types: types for protocols

e Goalisto rule out communication
errors statically

* Interactions between
participants specified as a global

type

» Global types projected to local
types for each participant

 Local types used to typecheck or
monitor individual processes

Example: Two-Buyer Protocol

Seller

< — - [Link] — — 94— — - [Link] — — >
title >
<4— quote quote ——P»
quote div 2 4 —p
s o o = s
<€—— address }
date P branch
- quit --------
Y v Y

* Two buyers co-ordinate to buy
an expensive item

 Traditionally a textbook, apt given
we're in the US

* Buyer1 asks for quote from seller

* Buyerl contacts Buyer2 with
their share

* Buyer2 can then either accept or
reject

Buyerl
Seller title(String) . Seller & quote(String).

/ Buyer2 @ share(Int).end

[Buyerl
Buyer1 — Seller : title(String).
Seller — Buyer1 : quote(Int). Buyerz
Buyer1 — Buyer2 : share(Int). Buyer1 & share(Int). Seller &{
Buyer2 — Seller : { 'Buyerz fp address(String).Seller & date(Date) . end
address(String) . quit(Unit).end}
Seller — Buyer2 : date(Date) . end,
quit(Unit).end
I ' Seller Seller
Buyer1 & title(String).Buyer1® quote(Int).
Buyer2 &{

address(String) . Buyer2 @ date(Date) .end
quit(Unit).end}

How can we apply session
types to actor languages?

Channels vus. Actors

b] Al B
eﬂ]@l@@ ?Int.?Int.!Bool.End =i » B
D | =
=d =d
EP=|
=l
D C]
= |Int. !Int.?Bool.End =
r=d
=
By =Y
Channels Actors ERLANG
Named buffers, anonymous processes Named processes, point-to-point messaging
Easy to type More difficult to type
Distributed programming difficult Distributed programming much easier
* Choice requires distributed algorithms « Messages always local to process

* No locality: distributed delegation tricky * Named processes allow supervision

Type the mailbox Type the process

Multiparty Session Actors

Idea: Actor can take part in

Global Protocol -—Va"adna:ition-b Local Protocols _Gzﬂn(:ar:gggn" Monitors mU|t|p|e rO|eSI In mU|t|p|e SeSSIOnS
Projection
Main benefit: sessions can share
State
Session Actor
(o 353) e Messages pass through runtime
% — monitor to check against session
User Logio Process Session 2, Role “Warehouse” o 501 by ty p e

Originally due to Neykova &
Yoshida, COORDINATION"14

User Logic Process Monitor Process

Static Checking?

Use flow-sensitive effect-typing
Multiparty Session Types for Safe Runtime judgement to enforce session typing

Adaptation in an Actor Language

Paul Harvey =

Rakuten Mobile Innovation Studio

Simon Fowler &

School of Computing Science, University of Glasgow

Ornela Dardha = D [] 4
School of Computing Science, University of Glasgow o

Simon J. Gay &

School of Computing Science, University of Glasgow

Abstract -
Human fallibility, unpredictable operating environments, and the heterogeneity of hardware devices
are driving the need for software to be able to adapt as seen in the Internet of Things or telecom-
munication networks. Unfortunately, mainstream programming languages do not readily allow a P d d T f
software component to sense and respond to its operating environment, by discovering, replacing, and re = a n p O St = C O n I t I O n S e n O rC e
communicating with components that are not part of the original system design, while maintaining
static correctness guarantees. In particular, if a new component is discovered at runtime, there is no M t T
guarantee that its communication behaviour is compatible with existing components. Se S SI O n y p I n g
We address this problem by using multiparty session types with explicil connection actions, a type
formalism used to model distributed communication protocols. By associating session types with
software components, the discovery process can check protocol compatibility and, when required,
correctly replace components without jeopardising safety. ° ° ° . .
We present the design and implementation of EnsembleS, the first actor-based language with LI m Itat I 0 n . O n |y o n e Se S S I O n at a t I m e
adaptive features and a static session type system, and apply it to a case study based on an adaptive °
DNS server. We formalise the type system of EnsembleS and prove the safety of well-typed programs,

making essential use of recent advances in non-classical multiparty session types.

Dynamic checking, multiple
sessions

or

Static checking, single session

Key idea: Combine a flow-
sensitive effect system with
event-driven programming

Event-driven programming

(N

Event loop

Events
Event handler

Isolated First-class

Processes Event Handlers

QO S

° O O @
© o ¢ 'y

Event handlers are
values (can even be
passed in
messages)

Co-ordination only
through message
passing

Flow-Sensitive
Effect Typing

N
a

Enforce session
typing by
governing the
actions that can be
performed

Access Points

(=53]
W

Actors register to
take part in
sessions

Example: Two-Buyer Protocol

Create access point to allow two-
buyer sessions to be established

main =
let ap — rleVVAP(SeIler:S,Bu er1:B1,Buyer2:B2) in
spawn (seller(ap) ()); Spawn a seller, and
spawnBuyers(ap, “Types and Programming Languages”); |— ;‘I’;’gif;tns;";b“yers'
spawnBuyers(ap, “Compiling with Continuations”) reference

spawnBuyers(ap, title) =
spawn buyer1(ap, title); spawn buyer2(ap)

Reqgister to take part as Seller.
When session established,

Example: Sel_ler / callback will recursively register,

then suspend awaiting title
seller{ap)—= :
ee msmll(—) 4 Invoked when

register ap Seller register ap Seller (install ()); | () message has been
suspend titleHandler received from Buyer.

Sends quote to Buyer],
titleHandler = suspends awaiting
decision from Buyer2

handler Buyer1 {
title(x) —
Buyer1!quote(lookupPrice(x)); suspend decisionHandler }

Invoked when decision

decisionHandler = has been received
from Buyer2.

handler Buyer2 { / Sends date to Buyer2,
address(addr) — Buyer2! date(shippingDate(addr)), or terminates

quit(_) + return () }

Roles D q

Variables X, Y,2, f

Values V,W = x| Ax.M | rec f(x).M | ¢ | handler p {ﬁ)}
Message Handlers H == {((x)—M

Computations LMN := letxe=MinN | returnV | VW

if Vthen M else N
spawn M | p!¢(V) | suspend V
newAP ,..1;); | register V p M

Explicit stratification of values and
computations (fine-grain call-by-value)

Under environment I, value V
'V: A has type A

Under environment I', with

. session pre-condition S,
F | S > M ‘ A < T computation M has type A

and post-condition T

jel TrV:A
I'| p@{ti(Ai).Sitiecr > p!t;(V):1 <S;

Send:

Precondition must permit us sending ¢;, payload type must match
Postcondition depends on which message we send

(F,xl.:A,- | S; > M;:1 <« end);

I' - handler p {#(x;) — M;} : Handler(p &{¢; (A;).Si}i)

Handlers:

Not an effect handler!
First-class representation of an event handler
Parameterised by a receive session type
Each branch has a session continuation, must complete session or

suspend

[+ V :Handler(S")

[|S’ > suspend V:A <« S

' end > M:1 < end
['|S»>spawn M:1 <S5

Suspend:
Installs given handler, returns to
being idle

Spawn:
Creates a hew process, not in
a session

newAP:
Creates an access point
(collection of types must be safe:
cannot exchange values of
mismatching types)

¢ is a safety property @ ((pi: Ti)ier)
I | S» neWAP(pi:Ti)iGI AP((pl : ’Ti)iEI))

jel | Register:
I : AP((pi : T;)i I'|T; :1 : : '
"V AP((pi : Ti)ier) | Tj > M:1 <en Registers with an access point
['|S > register Vip; M:1<3S to take part in a session

Semantics (Overview)

(T, o,
P P

Process state, either: Handler state: Initialisation state, used to
* |dle Stores event handlers to be establish sessions
 Term M (not in a session) invoked when a message

 Term M@s/p] (playing role arrives

P in session s)

Semantics formulated as concurrent lambda calculus; asynchronous
communication model

Metatheory

* Type preservation
* Reduction preserves typability

 Corollary: communication follows session types

* We expect / would like to see:
* Progress: Either system can take a step, or every process terminated

* Fidelity: (Absent unguarded recursion), reduction in type environment
should be reflected in processes

* Global progress: (Absent unguarded recursion) all sessions should be able
to reduce

Current Status

 Syntax, reduction rules, type
system

 Type preservation proof

* Typechecker and small-step
Interpreter

Future Plans

* Stronger metatheory: global
progress

* Switching between sessions
In a send state

* Mainstream language
Implementation (e.qg., via
Scala API generation)

Conclusion

» Actor languages are popular tools for reliable distributed code
 However, they are susceptible to communication errors

 Session types can rule out communication errors
 However, they are difficult to apply to actors directly

* This work: first statically-checked application of session types to
actors, where actors can take part in multiple sessions

» Key idea: combine flow-sensitive effect typing and first-class event handlers

Thanks!
@simon_jf@mastodon.scot

Bonus Slides

[Lx:A|S>M:B<T

S, T
I'-Ax.M : A — B

S, T
'+tV:A— B ['FW:A

T|SeVW:B<«T

Abstraction:
Pre- and post-conditions
recorded in function types

Application:
Recorded pre- and post-
conditions must be compatible

'FV:A
['|S>returnV:A<«S

F||S1i>M:A<S)
[Lx:A|Sy> N:B <« S5

['|Sipeletx<=MinN:B < S;3

Return:
Treat a value as a computation

Let:
Sequence effectful computations
The only evaluation context

