
Event-Driven Multiparty 
Session Actors

Simon Fowler & Raymond Hu

HOPE, 4th September 2023



Actor Languages

• Actor languages: communication-
centric languages
• Communication via explicit 

message passing

• Popular for writing reliable 
distributed code
• Power WhatsApp, with >1B users
• Support data locality and idioms 

such as supervision hierarchies



Communication Errors

Communication Mismatch
• Receiving an unexpected message / message with unexpected payload 

type

Deadlock
• Cyclic dependencies meaning communication cannot proceed

Livelock
• Communication in one part of the system starves communication in 

another part of the system



Multiparty Session Types
• Session types: types for protocols
• Goal is to rule out communication 

errors statically

• Interactions between 
participants specified as a global 
type
• Global types projected to local 

types for each participant
• Local types used to typecheck or 

monitor individual processes



Example: Two-Buyer Protocol

• Two buyers co-ordinate to buy 
an expensive item
• Traditionally a textbook, apt given 

we’re in the US

• Buyer1 asks for quote from seller
• Buyer1 contacts Buyer2 with 

their share
• Buyer2 can then either accept or 

reject



↾ Buyer1

↾ Buyer2

↾ Seller

Buyer1

Buyer2

Seller



How can we apply session 
types to actor languages?



Channels vs. Actors

Channels Actors
Named buffers, anonymous processes
Easy to type
Distributed programming difficult
• Choice requires distributed algorithms
• No locality: distributed delegation tricky

Named processes, point-to-point messaging
More difficult to type
Distributed programming much easier
• Messages always local to process
• Named processes allow supervision

?Int.?Int.!Bool.End

!Int.!Int.?Bool.End



Type the processType the mailbox



Multiparty Session Actors
Idea: Actor can take part in 
multiple roles, in multiple sessions

Main benefit: sessions can share 
state

Messages pass through runtime 
monitor to check against session 
type

Originally due to Neykova & 
Yoshida, COORDINATION’14



Static Checking?
Use flow-sensitive effect-typing 
judgement to enforce session typing

Γ ∣ S▹M ∶ A◃T
Pre- and post-conditions enforce 
session typing

Limitation: Only one session at a time



Dynamic checking, multiple 
sessions

Static checking, single session

or



Key idea: Combine a flow-
sensitive effect system with 
event-driven programming



Event-driven programming

e1 e2 e3 e4

Events

Event loop

Event handler



Isolated 
Processes

Co-ordination only 
through message 

passing

Access Points

Actors register to 
take part in 

sessions

First-class 
Event Handlers

Event handlers are 
values (can even be 

passed in 
messages)

Flow-Sensitive 
Effect Typing

Enforce session 
typing by 

governing the 
actions that can be 

performed



Example: Two-Buyer Protocol

Create access point to allow two-
buyer sessions to be established 

Spawn a seller, and 
two sets of buyers, 
all given AP 
reference



Example: Seller
Register to take part as Seller.
When session established, 
callback will recursively register, 
then suspend awaiting title

Invoked when 
message has been 
received from Buyer1.
Sends quote to Buyer1, 
suspends awaiting 
decision from Buyer2

Invoked when decision 
has been received 
from Buyer2.
Sends date to Buyer2, 
or terminates



Explicit stratification of values and 
computations (fine-grain call-by-value)



Γ ∣ S▹M ∶ A◃T

Γ ⊢ V ∶ A
Under environment Γ, value V 

has type A 

Under environment Γ, with 
session pre-condition S, 

computation M has type A 
and post-condition T



Send:
Precondition must permit us sending ℓ! , payload type must match

Postcondition depends on which message we send



Handlers:
Not an effect handler!

First-class representation of an event handler
Parameterised by a receive session type

Each branch has a session continuation, must complete session or 
suspend

𝑖



Spawn:
Creates a new process, not in 

a session

Suspend:
Installs given handler, returns to 

being idle



Register:
Registers with an access point 

to take part in a session

newAP:
Creates an access point

(collection of types must be safe: 
cannot exchange values of 

mismatching types)



Semantics (Overview)

𝑇, 𝜎, 𝜌
Process state, either:
• Idle
• Term M (not in a session)
• Term M@s[p] (playing role 

p in session s)

Handler state:
Stores event handlers to be 
invoked when a message 
arrives

Initialisation state, used to 
establish sessions

Semantics formulated as concurrent lambda calculus; asynchronous 
communication model



Metatheory

• Type preservation
• Reduction preserves typability
• Corollary: communication follows session types

• We expect / would like to see:
• Progress: Either system can take a step, or every process terminated
• Fidelity: (Absent unguarded recursion), reduction in type environment 

should be reflected in processes
• Global progress: (Absent unguarded recursion) all sessions should be able 

to reduce



Current Status
• Syntax, reduction rules, type 

system
• Type preservation proof
• Typechecker and small-step 

interpreter

Future Plans
• Stronger metatheory: global 

progress
• Switching between sessions 

in a send state
• Mainstream language 

implementation (e.g., via 
Scala API generation)



Conclusion

• Actor languages are popular tools for reliable distributed code
• However, they are susceptible to communication errors

• Session types can rule out communication errors
• However, they are difficult to apply to actors directly

• This work: first statically-checked application of session types to 
actors, where actors can take part in multiple sessions
• Key idea: combine flow-sensitive effect typing and first-class event handlers

Thanks!
@simon_jf@mastodon.scot 



Bonus Slides



Abstraction:
Pre- and post-conditions 

recorded in function types

Application:
Recorded pre- and post-

conditions must be compatible



Return:
Treat a value as a computation

Let:
Sequence effectful computations

The only evaluation context


