
Designing Asynchronous Multiparty Protocols
with Crash-Stop Failures
Adam D. Barwell1 Ping Hou2 Nobuko Yoshida2 Fangyi Zhou2,3

1University of St Andrews 2University of Oxford 3Imperial College London

Stardust Meeting, Glasgow

18 December 2023

Concurrent and Communicating Systems

» Are ubiquitous
– Mobile phones, desktops, distributed systems, the internet, &c.

» Can be difficult to get right unaided
– Communications mismatch, deadlocks, livelocks, &c.

» Some assistance: Session Types

2

Concurrent and Communicating Systems

» Are ubiquitous
– Mobile phones, desktops, distributed systems, the internet, &c.

» Can be difficult to get right unaided
– Communications mismatch, deadlocks, livelocks, &c.

» Some assistance: Session Types

2

(Multiparty) Session Types

» Formally describe communications behaviour between two or more systems

» Communications behaviour is enforced statically

3

Top-Down Multiparty Session Types

Global Type

Local Types

Processes

G

T1 T2
. . . Tn

P1 P2
. . . Pn

Projects onto

Type Checks

(↾)

(⊢)

(Bird’s-Eye View)

(Participant’s View)

(Implementation)

4

Top-Down Multiparty Session Types – Advantages

» Correct-by-construction behavioural properties
– Communication safety
– Deadlock-freedom
– Liveness

» Generate protocol-conforming code
– Library support in Scala, Rust, Haskell, Erlang, OCaml, &c.

5

One Caveat: Fault-Tolerance, or Lack Thereof

» Traditional MPST systems assume a perfect world
– No process failures
– No message loss, duplication, or corruption

» Distributed systems can, and will, fail
– Reality is not so convenient. . .

» Such MPST systems cannot reason about failures
– How do participants handle crashes?
– Do behavioural guarantees still hold in the

presence of crashes?

6

One Caveat: Fault-Tolerance, or Lack Thereof

» Traditional MPST systems assume a perfect world
– No process failures
– No message loss, duplication, or corruption

» Distributed systems can, and will, fail
– Reality is not so convenient. . .

» Such MPST systems cannot reason about failures
– How do participants handle crashes?
– Do behavioural guarantees still hold in the

presence of crashes?

6

One Caveat: Fault-Tolerance, or Lack Thereof

» Traditional MPST systems assume a perfect world
– No process failures
– No message loss, duplication, or corruption

» Distributed systems can, and will, fail
– Reality is not so convenient. . .

» Such MPST systems cannot reason about failures
– How do participants handle crashes?
– Do behavioural guarantees still hold in the

presence of crashes?

6

Asynchronous Multiparty Protocols with Crash-Stop Failures

We present an asynchronous top-down MPST theory with crash-stop failures.

1. Behavioural Guarantees

2. Optional Reliability Assumptions

3. Code generation toolchain, Teatrino

7

Crash-Stop Failures

» Processes can crash arbitrarily
» Crashed processes make no progress and do not recover
» Communications channels deliver messages in order and without losses

P

Q

�

8

(Part of) A Simple Distributed Logger

A Client requests the accumulated logs from a distributed Logger via an Interface process.

Client

Interface

Logger
hb

read

read
report

report

G = L→I:hb.C→I:read.I→L:read.L→I:report(log).I→C:report(log).end

The full version of the protocol (and other variants) can be found in the paper/artefact.
9

(Part of) A Simple Distributed Logger

A Client requests the accumulated logs from a distributed Logger via an Interface process.

Client

Interface

Logger

�

hb
read

report

report

G = L→I:hb. ??

9

(Part of) A Simple Distributed Logger

A Client requests the accumulated logs from a distributed Logger via an Interface process.

Client

Interface

Logger

�

hb
fatal

crash

G = L→I:hb.C→I:

{
read .I→L:read.L→I:report(log).I→C:report(log).end
crash .I→L:fatal.end

Reserved label; represents crash detection

}

9

Global Type Syntax

B ::= int
∣∣ bool

∣∣ real
∣∣ unit

∣∣ . . . Basic types

G ::= p→q†: {mi(Bi).Gi}i∈I Transmission∣∣ p†⇝q:j {mi(Bi).Gi}i∈I (j ∈ I) Transmission en route∣∣ µt.G Recursion∣∣ t Type variable∣∣ end Termination

† ::= ·
∣∣ Crash annotation

» Runtime types are not available to the user, only via reduction.

» crash is a reserved label indicating crash-handling branches.

10

Crashing Clients
Participant C Crashes.

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

↓R

G1 = L→I:hb. C ⇝ I :

{
read.I→L:read.L→I:report(log).I→ C :report(log).end
crash.I→L:fatal.end

}

11

Crashing Clients
Participant C Crashes.

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

↓R

G1 = L→I:hb. C ⇝ I :

{
read.I→L:read.L→I:report(log).I→ C :report(log).end
crash.I→L:fatal.end

}

11

Crashing Clients
Participant C Crashes.

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

↓R

p /∈ R p ∈ roles(G) G ̸= µt.G′

⟨ C ;G⟩ p −→R ⟨C ∪ {p}; G p ⟩
[GR-]

p is unreliable p occurs in G G is anything but a µ-term

Set of crashed roles ‘Remove’ p from G

G1 = L→I:hb. C ⇝ I :

{
read.I→L:read.L→I:report(log).I→ C :report(log).end
crash.I→L:fatal.end

}

11

But Some are More Reliable than Others

No processes
can crash

All processes
can crash

But what about

some processes can crash?

» Some participants may represent services that can be assumed reliable

Optional Reliability Assumptions
» Specific participants can be marked as reliable
» Reliable participants will not crash
» Reduction rules, &c. conform to these assumptions

12

But Some are More Reliable than Others

No processes
can crash

All processes
can crash

But what about

some processes can crash?

» Some participants may represent services that can be assumed reliable

Optional Reliability Assumptions
» Specific participants can be marked as reliable
» Reliable participants will not crash
» Reduction rules, &c. conform to these assumptions

12

Crashing Clients
Participant I Detects

G1 = L→I:hb.C ⇝ I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓∗R

G4 = C ⇝I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓R

G5 = I→L:fatal.end

13

Crashing Clients
Participant I Detects

G1 = L→I:hb.C ⇝ I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓∗R

G4 = C ⇝I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓R

G5 = I→L:fatal.end

13

Crashing Clients
Participant I Detects

G4 = C ⇝I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓R

G5 = I→L:fatal.end

13

Crashing Clients
Participant I Detects

G4 = C ⇝I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓R

j ∈ I mj = crash

⟨C; p ⇝q:j
{
mi(Bi).G′

i
}
i∈I⟩

q⊙p−−→R ⟨C;G′
j⟩

[GR-⊙]

G5 = I→L:fatal.end

13

Local Type Syntax

B ::= int
∣∣ bool

∣∣ real
∣∣ unit

∣∣ . . . Basic types

S, T ::= p&{mi(Bi).Ti}i∈I External choice∣∣ p⊕{mi(Bi).Ti}i∈I Internal choice∣∣ µt.T Recursion∣∣ t Type variable∣∣ end Termination∣∣ stop Crash

» The runtime stop type is the type of crashed participants

» crash is a reserved label indicating crash-handling branches

14

Type Checking Distributed Logging with Local Types

TC = I⊕read.I&report(log).end

PC = I!read.I?report(x).0

TI = L&hb.C&
{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}

PI = L?hb.
∑{

C?read.L!read.L?report(x).C!report⟨x⟩.0
C?crash.L!fatal.0

}

We largely elide the session π-calculus here, but full details can be found in the paper.
15

Local Type Context Reduction

TC = I⊕read.I&report(log).end

PC = I!read.I?report(x).0
→

TC = stop

PC =

» Rules are largely standard
– Crashing, crash-detection, &c. rules are novel

» Queues handle asynchronous message passing
– Queues are made unavailable when the corresponding participant has crashed

16

Projecting Global Types into Local Types
Relates G and T for a given p.

(
q→r†: {mi(Bi).Gi}i∈I

)
↾R p =

r⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash} if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I
if p = r, and q /∈ R implies

∃k ∈ I : mk = crashd
i∈I Gi ↾R p if p ̸= q, and p ̸= r

(
q†⇝r:j {mi(Bi).Gi}i∈I

)
↾R p =

Gj ↾R p if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I
if p = r, and q /∈ R implies

∃k ∈ I : mk = crashd
i∈I Gi ↾R p if p ̸= q, and p ̸= r

(µt.G) ↾R p =

{
µt.(G ↾R p) if p ∈ G or fv(µt.G) ̸= ∅
end otherwise

t ↾R p = t
end ↾R p = end

The (full) merging operator definition can be found in the paper.
17

Projection Begat Properties

1. Association of Global Type and Configuration (Soundness and Completeness)
– Global and local types do not diverge when reducing

2. Configuration Safety
– There are no label mismatches
– Each receiver must be able to handle the potential crash of the (unreliable) sender

3. Deadlock-Freedom (Progress)
– Local types are able to reduce until they terminate or crash

4. Liveness
– Every pending internal/external choice is eventually triggered (by message transmission

or crash detection)

Formal definitions and proofs can be found in the paper.
18

Projection Begat Properties

1. Association of Global Type and Configuration (Soundness and Completeness)
– Global and local types do not diverge when reducing

2. Configuration Safety
– There are no label mismatches
– Each receiver must be able to handle the potential crash of the (unreliable) sender

3. Deadlock-Freedom (Progress)
– Local types are able to reduce until they terminate or crash

4. Liveness
– Every pending internal/external choice is eventually triggered (by message transmission

or crash detection)

Formal definitions and proofs can be found in the paper.
18

Projection Begat Properties

1. Association of Global Type and Configuration (Soundness and Completeness)
– Global and local types do not diverge when reducing

2. Configuration Safety
– There are no label mismatches
– Each receiver must be able to handle the potential crash of the (unreliable) sender

3. Deadlock-Freedom (Progress)
– Local types are able to reduce until they terminate or crash

4. Liveness
– Every pending internal/external choice is eventually triggered (by message transmission

or crash detection)

Formal definitions and proofs can be found in the paper.
18

Projection Begat Properties

1. Association of Global Type and Configuration (Soundness and Completeness)
– Global and local types do not diverge when reducing

2. Configuration Safety
– There are no label mismatches
– Each receiver must be able to handle the potential crash of the (unreliable) sender

3. Deadlock-Freedom (Progress)
– Local types are able to reduce until they terminate or crash

4. Liveness
– Every pending internal/external choice is eventually triggered (by message transmission

or crash detection)

Formal definitions and proofs can be found in the paper.
18

Asynchronous Multiparty Protocols with Crash-Stop Failures

We present an asynchronous top-down MPST theory with crash-stop failures.

✓ Behavioural Guarantees

✓ Optional Reliability Assumptions

⇒ Code generation toolchain, Teatrino

19

TEATRINO

Protocol.scr Teatrino Protocol.scala Final.scala· · ·
Programmer

Integration

» Scribble-inspired code generation toolchain
– Consumes Scribble protocols
– Produces protocol-conforming Scala code using the Effpi concurrency library
– Generated code is executable

» Implements our (non-runtime) Global and Local Types, and Projection

» Extends both the Effpi and Scribble syntaxes with crash-stop failures

20

The (Extended) SCRIBBLE Protocol Description Language

» We support (a less sugary subset of) the version accepted by νScr1

– No support for do-notation – recursion is expressed via rec and continue
– No support for auxiliary protocol definitions

Extensions
1. reliable role declarations

2. Reserved crash label

1https://nuscr.dev/
21

The (Extended) SCRIBBLE Protocol Description Language

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

1 global protocol G(reliable role L, role C, reliable role I) {

2 hb from L to I;

3 choice at C {

4 read from C to I;

5 read from I to L;

6 report(Log) from L to I;

7 report(Log) from I to C;

8 } or {

9 crash from C to I;

10 fatal from I to L;

11 }

12 }

21

The (Extended) EFFPI Concurrency Library

» Embedded Domain Specific Language for Scala 3
» Leverages type features to represent local types directly in code

– Union types, match types, and dependent and polymorphic function types

Extensions
1. Support for crash-handling branches

– New type-level receive construct: InErr
– New value-level receive construct: receiveErr

2. Support for crash detection
– Implemented using timeouts

Original version of Effpi: https://github.com/alcestes/effpi
22

https://github.com/alcestes/effpi

The (Extended) EFFPI Concurrency Library

TI = L&hb.C&
{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}

1 type I[C0 <: InChan[Hb],

2 C1 <: OutChan[Fatal],

3 C2 <: InChan[Read],

4 C3 <: InChan[Report],

5 C4 <: OutChan[Report]] =

6 In[C0, Hb, (X <: Hb) =>

7 InErr[C2, Read,

8 (Y <: Read) =>

9 Out[C3,Read] >>: In[C4, Report, (Z <: Log) => Out[C5, Report]],

10 (Err <: Throwable) => Out[C2,Fatal]

11]]

22

Evaluating TEATRINO

Expressiveness
» Applied to examples from session type and distributed systems literature

» Standard examples extended with crash-handling behaviour

» Two patterns: graceful failure and failover

Feasibility
» We give generation times for all of our examples
» We report times for the three main generation phases:

1. Parsing
2. EffpiIR Generation
3. Code Generation

23

Evaluating TEATRINO

» Evaluated on 19 protocols taken from session type and distributed system literature
– Code generation times all under 3 milliseconds

23

Summary
» Asynchronous top-down MPST theory with crash-stop failures:

– Support for fully-reliable to fully-unreliable protocols
– Safety, deadlock-freedom, and liveness guarantees

» Teatrino: toolchain support for generating protocol-conformant Scala code

» Future work:
– Investigate different crash and failure models (e.g. crash-recover, link failures)

Links
» Full version: https://arxiv.org/abs/2305.06238

» Artefact: https://doi.org/10.5281/zenodo.7714132

» Artefact Source: https://github.com/adbarwell/ECOOP23-Artefact

24

https://arxiv.org/abs/2305.06238
https://doi.org/10.5281/zenodo.7714132
https://github.com/adbarwell/ECOOP23-Artefact

