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Concurrent and Communicating Systems

» Are ubiquitous
– Mobile phones, desktops, distributed systems, the internet, &c.

» Can be difficult to get right unaided
– Communications mismatch, deadlocks, livelocks, &c.

» Some assistance: Session Types
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(Multiparty) Session Types

» Formally describe communications behaviour between two or more systems

» Communications behaviour is enforced statically
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Top-Down Multiparty Session Types
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Top-Down Multiparty Session Types – Advantages

» Correct-by-construction behavioural properties
– Communication safety
– Deadlock-freedom
– Liveness

» Generate protocol-conforming code
– Library support in Scala, Rust, Haskell, Erlang, OCaml, &c.
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One Caveat: Fault-Tolerance, or Lack Thereof

» Traditional MPST systems assume a perfect world
– No process failures
– No message loss, duplication, or corruption

» Distributed systems can, and will, fail
– Reality is not so convenient. . .

» Such MPST systems cannot reason about failures
– How do participants handle crashes?
– Do behavioural guarantees still hold in the

presence of crashes?
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Asynchronous Multiparty Protocols with Crash-Stop Failures

We present an asynchronous top-down MPST theory with crash-stop failures.

1. Behavioural Guarantees

2. Optional Reliability Assumptions

3. Code generation toolchain, Teatrino
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Crash-Stop Failures

» Processes can crash arbitrarily
» Crashed processes make no progress and do not recover
» Communications channels deliver messages in order and without losses

P

Q

�
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(Part of) A Simple Distributed Logger

A Client requests the accumulated logs from a distributed Logger via an Interface process.

Client

Interface

Logger
hb

read

read
report

report

G = L→I:hb.C→I:read.I→L:read.L→I:report(log).I→C:report(log).end

The full version of the protocol (and other variants) can be found in the paper/artefact.
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(Part of) A Simple Distributed Logger

A Client requests the accumulated logs from a distributed Logger via an Interface process.

Client

Interface

Logger

�

hb
read

report

report

G = L→I:hb. ??
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(Part of) A Simple Distributed Logger

A Client requests the accumulated logs from a distributed Logger via an Interface process.

Client

Interface

Logger

�

hb
fatal

crash

G = L→I:hb.C→I:

{
read .I→L:read.L→I:report(log).I→C:report(log).end
crash .I→L:fatal.end

Reserved label; represents crash detection

}
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Global Type Syntax

B ::= int
∣∣ bool

∣∣ real
∣∣ unit

∣∣ . . . Basic types

G ::= p→q†: {mi(Bi).Gi}i∈I Transmission∣∣ p†⇝q:j {mi(Bi).Gi}i∈I (j ∈ I) Transmission en route∣∣ µt.G Recursion∣∣ t Type variable∣∣ end Termination

† ::= ·
∣∣  Crash annotation

» Runtime types are not available to the user, only via reduction.

» crash is a reserved label indicating crash-handling branches.
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Crashing Clients
Participant C Crashes.

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

↓R

G1 = L→I:hb. C ⇝ I :

{
read.I→L:read.L→I:report(log).I→ C :report(log).end
crash.I→L:fatal.end

}
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Crashing Clients
Participant C Crashes.

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

↓R

p /∈ R p ∈ roles(G) G ̸= µt.G′

⟨ C ;G⟩ p −→R ⟨C ∪ {p}; G p ⟩
[GR- ]

p is unreliable p occurs in G G is anything but a µ-term

Set of crashed roles ‘Remove’ p from G

G1 = L→I:hb. C ⇝ I :

{
read.I→L:read.L→I:report(log).I→ C :report(log).end
crash.I→L:fatal.end

}
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But Some are More Reliable than Others

No processes
can crash

All processes
can crash

But what about

some processes can crash?

» Some participants may represent services that can be assumed reliable

Optional Reliability Assumptions
» Specific participants can be marked as reliable
» Reliable participants will not crash
» Reduction rules, &c. conform to these assumptions
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Crashing Clients
Participant I Detects

G1 = L→I:hb.C ⇝ I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓∗R

G4 = C ⇝I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓R

G5 = I→L:fatal.end
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Crashing Clients
Participant I Detects

G4 = C ⇝I:
{
read.I→L:read.L→I:report(log).I→C :report(log).end
crash.I→L:fatal.end

}

↓R

j ∈ I mj = crash

⟨C; p ⇝q:j
{
mi(Bi).G′

i
}
i∈I⟩

q⊙p−−→R ⟨C;G′
j⟩

[GR-⊙]

G5 = I→L:fatal.end
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Local Type Syntax

B ::= int
∣∣ bool

∣∣ real
∣∣ unit

∣∣ . . . Basic types

S, T ::= p&{mi(Bi).Ti}i∈I External choice∣∣ p⊕{mi(Bi).Ti}i∈I Internal choice∣∣ µt.T Recursion∣∣ t Type variable∣∣ end Termination∣∣ stop Crash

» The runtime stop type is the type of crashed participants

» crash is a reserved label indicating crash-handling branches
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Type Checking Distributed Logging with Local Types

TC = I⊕read.I&report(log).end

PC = I!read.I?report(x).0

TI = L&hb.C&
{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}

PI = L?hb.
∑{

C?read.L!read.L?report(x).C!report⟨x⟩.0
C?crash.L!fatal.0

}

We largely elide the session π-calculus here, but full details can be found in the paper.
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Local Type Context Reduction

TC = I⊕read.I&report(log).end

PC = I!read.I?report(x).0
→

TC = stop

PC =  

» Rules are largely standard
– Crashing, crash-detection, &c. rules are novel

» Queues handle asynchronous message passing
– Queues are made unavailable when the corresponding participant has crashed
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Projecting Global Types into Local Types
Relates G and T for a given p.

(
q→r†: {mi(Bi).Gi}i∈I

)
↾R p =


r⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash} if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I
if p = r, and q /∈ R implies

∃k ∈ I : mk = crashd
i∈I Gi ↾R p if p ̸= q, and p ̸= r

(
q†⇝r:j {mi(Bi).Gi}i∈I

)
↾R p =


Gj ↾R p if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I
if p = r, and q /∈ R implies

∃k ∈ I : mk = crashd
i∈I Gi ↾R p if p ̸= q, and p ̸= r

(µt.G) ↾R p =

{
µt.(G ↾R p) if p ∈ G or fv(µt.G) ̸= ∅
end otherwise

t ↾R p = t
end ↾R p = end

The (full) merging operator definition can be found in the paper.
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Projection Begat Properties

1. Association of Global Type and Configuration (Soundness and Completeness)
– Global and local types do not diverge when reducing

2. Configuration Safety
– There are no label mismatches
– Each receiver must be able to handle the potential crash of the (unreliable) sender

3. Deadlock-Freedom (Progress)
– Local types are able to reduce until they terminate or crash

4. Liveness
– Every pending internal/external choice is eventually triggered (by message transmission

or crash detection)

Formal definitions and proofs can be found in the paper.
18
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Asynchronous Multiparty Protocols with Crash-Stop Failures

We present an asynchronous top-down MPST theory with crash-stop failures.

✓ Behavioural Guarantees

✓ Optional Reliability Assumptions

⇒ Code generation toolchain, Teatrino
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TEATRINO

Protocol.scr Teatrino Protocol.scala Final.scala· · ·
Programmer

Integration

» Scribble-inspired code generation toolchain
– Consumes Scribble protocols
– Produces protocol-conforming Scala code using the Effpi concurrency library
– Generated code is executable

» Implements our (non-runtime) Global and Local Types, and Projection

» Extends both the Effpi and Scribble syntaxes with crash-stop failures

20



The (Extended) SCRIBBLE Protocol Description Language

» We support (a less sugary subset of) the version accepted by νScr1

– No support for do-notation – recursion is expressed via rec and continue
– No support for auxiliary protocol definitions

Extensions
1. reliable role declarations

2. Reserved crash label

1https://nuscr.dev/
21



The (Extended) SCRIBBLE Protocol Description Language

G = L→I:hb.C→I:
{
read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}

1 global protocol G(reliable role L, role C, reliable role I) {

2 hb from L to I;

3 choice at C {

4 read from C to I;

5 read from I to L;

6 report(Log) from L to I;

7 report(Log) from I to C;

8 } or {

9 crash from C to I;

10 fatal from I to L;

11 }

12 }
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The (Extended) EFFPI Concurrency Library

» Embedded Domain Specific Language for Scala 3
» Leverages type features to represent local types directly in code

– Union types, match types, and dependent and polymorphic function types

Extensions
1. Support for crash-handling branches

– New type-level receive construct: InErr
– New value-level receive construct: receiveErr

2. Support for crash detection
– Implemented using timeouts

Original version of Effpi: https://github.com/alcestes/effpi
22
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The (Extended) EFFPI Concurrency Library

TI = L&hb.C&
{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}

1 type I[C0 <: InChan[Hb],

2 C1 <: OutChan[Fatal],

3 C2 <: InChan[Read],

4 C3 <: InChan[Report],

5 C4 <: OutChan[Report]] =

6 In[C0, Hb, (X <: Hb) =>

7 InErr[C2, Read,

8 (Y <: Read) =>

9 Out[C3,Read] >>: In[C4, Report, (Z <: Log) => Out[C5, Report]],

10 (Err <: Throwable) => Out[C2,Fatal]

11 ]]
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Evaluating TEATRINO

Expressiveness
» Applied to examples from session type and distributed systems literature

» Standard examples extended with crash-handling behaviour

» Two patterns: graceful failure and failover

Feasibility
» We give generation times for all of our examples
» We report times for the three main generation phases:

1. Parsing
2. EffpiIR Generation
3. Code Generation
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Evaluating TEATRINO

» Evaluated on 19 protocols taken from session type and distributed system literature
– Code generation times all under 3 milliseconds
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Summary
» Asynchronous top-down MPST theory with crash-stop failures:

– Support for fully-reliable to fully-unreliable protocols
– Safety, deadlock-freedom, and liveness guarantees

» Teatrino: toolchain support for generating protocol-conformant Scala code

» Future work:
– Investigate different crash and failure models (e.g. crash-recover, link failures)

Links
» Full version: https://arxiv.org/abs/2305.06238

» Artefact: https://doi.org/10.5281/zenodo.7714132

» Artefact Source: https://github.com/adbarwell/ECOOP23-Artefact
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