Asynchronous Subtyping by Trace Relaxation

Laura Bocchi and Andy King Maurizio Murgia

University of Kent Canterbury, UK
Gran Sasso Science Institute L'Aquila, Italy

TACAS, 6-11 April 2024, Luxembourg City

Session subtyping

S_{2} models a process, which in state p_{0}, either:

- sends a message a or
- sends a message b and then receives a message c and does so repeatedly

S_{1} can be safely substituted for S_{2} because:
- S_{1} has fewer sends (the absent !a) - co-variant
- S_{1} has more receives (the additional ?d) - contra-variant

Write $S_{1} \leq S_{2}$ iff a program with type S_{1} can be safely substituted for a program with type S_{2}.

Why is subtyping useful?

- Check whether one component in a distributed system can be safety substituted with a patch
- Encourages a design methodology based on refinement
- Subtyping enables protocol optimisation in the order of sends and recieves are tweaked for improved performance

Why is subtyping tricky?

Consider M_{2} which models a server producing a news feed (!b) on request from a client (?a):

After receiving on a, M_{2} can mimic the first $!b$ of M_{1}, but it can only perform the second $!b$ after another ? a recieve

The input ? a is said to guard the output $!b$
One needs to reason about these dependencies to verify $M_{1} \leq M_{2}$

Timeline for (very closely) related work

2005 S. Gay and M. Hole: Subtyping for Session Types in the Pi Calculus, Acta Informatica 42, 191-225 (2005).
2017 J. Lange and N. Yoshida: On the Undecidability of Asynchronous Session Subtyping, FoSSaCS, 441-457 (2017).
2021 M. Bravetti, M Carbone, J. Lange, N. Yoshida and G. Zavattaro: A Sound Algorithm for Asychronous Session Subtyping and its Implementation, LMCS 17(1), 1-35 (2021).
2021 S. Ghilezan, J. Pantovic, I. Prokic, A. Scalas and N. Yoshida: Precise Subtyping for Asynchronous Multiparty Sessions, POPL, 1-28 (2021).

From a simulation tree [LMCS'21] to a collecting simulation graph in a nutshell

S and S^{\prime} can be finitely represented by the regular strings $a^{*} q_{0}$ and $a^{*} q_{0}+q_{1}$ respectively

Is $N_{1} \leq N_{2}$?

Note that any cycle in N_{1} passes through p_{0}; we put $w p=\left\{p_{0}\right\}$

step 0: A (collecting) simulation graph for proving $N_{1} \leq N_{2}$

$R_{0}=\left\{q_{0}\right\}$

Commentary on step 1

- N_{1} receives at p_{0} with $\operatorname{in}_{N_{1}}\left(p_{0}\right)=\{a, c\}$
- Contra-variance of receive requires $\operatorname{in}_{N_{1}}\left(p_{0}\right) \supseteq \operatorname{in}_{N_{2}}\left(q_{0}\right)$
- But $\operatorname{in}_{N_{2}}\left(q_{0}\right)=\{a, c\}$ so simulation proceeds with

$$
p_{0} \leq q_{0} \stackrel{? a}{\longrightarrow} p_{1} \leq q_{1} \text { and } p_{0} \leq q_{0} \stackrel{? c}{\longrightarrow} p_{2} \leq q_{5}
$$

step 1: A (collecting) simulation graph for proving $N_{1} \leq N_{2}$

$R_{0}=\left\{q_{0}\right\}$
$R_{1}=\left\{q_{1}\right\}$
$R_{6}=\left\{q_{5}\right\}$

Commentary on step 2 ; just $p_{1} \leq R_{1}$ where $R_{1}=\left\{q_{1}\right\}$

- N_{1} sends at p_{1} with out $N_{N_{1}}\left(p_{1}\right)=\{b\}$
- Co-variance of send requires out $N_{N_{1}}\left(p_{1}\right) \subseteq$ out $_{N_{2}}\left(q_{i}\right)$ for some q_{i} after q_{1}
- Two contendors for q_{i} are q_{2} and q_{3} because:
- $q_{1} \xrightarrow{? a} q_{2}$ and out $N_{2}\left(q_{2}\right)=\{b\}$
- $q_{1} \xrightarrow{? c} q_{3}$ and out $N_{N_{2}}\left(q_{3}\right)=\{b\}$
- But $q_{2} \xrightarrow{!b} q_{0}$ and $q_{3} \xrightarrow{!b} q_{3}$ so simulation proceeds with

$$
p_{1} \leq q_{1} \stackrel{!b}{\longrightarrow} p_{0} \leq a q_{0} \text { and } p_{1} \leq q_{1} \stackrel{!b}{\longrightarrow} p_{0} \leq c q_{3}
$$

- Can we simulate the send $!b$ and continue at $q_{0}\left(\operatorname{resp} q_{3}\right)$ after a recieve ?a (resp. ?c)
step 2: A (collecting) simulation graph for proving $N_{1} \leq N_{2}$

$$
\begin{aligned}
& R_{0}=\left\{q_{0}\right\} \\
& R_{1}=\left\{q_{1}\right\} \\
& R_{6}=\left\{q_{5}\right\} \\
& R_{2}=\left\{a q_{0}, c q_{3}\right\} \\
& R_{2}^{\prime}=\left\{a^{*} q_{0}, c q_{3}\right\} \\
& R_{7}=\left\{q_{6}\right\}
\end{aligned}
$$

step 3: A (collecting) simulation graph for proving $N_{1} \leq N_{2}$

$$
\begin{aligned}
& R_{0}=\left\{q_{0}\right\} \\
& R_{1}=\left\{q_{1}\right\} \\
& R_{6}=\left\{q_{5}\right\} \\
& R_{2}=\left\{a q_{0}, c q_{3}\right\} \\
& R_{2}^{\prime}=\left\{a^{*} q_{0}, c q_{3}\right\} \\
& R_{7}=\left\{q_{6}\right\} \\
& R_{3}=\left\{a^{*} q_{0}\right\} \\
& R_{3}^{\prime}=\left\{a^{*} q_{0}, q_{1}\right\} \\
& R_{8}=\left\{q_{3}\right\} \\
& R_{8}^{\prime}=\left\{q_{3}, q_{5}\right\}
\end{aligned}
$$

step 4: A (collecting) simulation graph for proving $N_{1} \leq N_{2}$

step 5: A (collecting) simulation graph for proving $N_{1} \leq N_{2}$

Benchmarking

M_{1}	$M_{2}\left\|M_{1}\right\|\left\|M_{2}\right\|$			[LMCS'21] regex time	
ctxta1	ctxta2	7	5	X	$\checkmark 110$
ctxtb1	ctxtb2	6	7	x	$\checkmark 41$
14 may2 (N_{1})	$14 \mathrm{may} 1\left(\mathrm{~N}_{2}\right)$	4	7	x	$\checkmark 10$
badseq1	badseq2	5	12	x	$\checkmark 1127$
march3testa1	march3testa2	6	7	x	$\checkmark 222$
aaaaaab1	aaaaaab2	5	3	x	$\checkmark 43$
ex1okloop	ex2okloop	10	8	x	$\checkmark 1757$
march3testa1	march3testb2	6	10	x	$\times 8$

Post morten on march3testa1 \leq march3testb2

Subtyping can be established by replacing

$$
R_{0}=\left\{q_{0},\{a, b\}^{*} q_{3}, a q_{8}\right\} \text { with } R_{0}=\left\{q_{0}, R q_{3}, R q_{6}, R q_{8}\right\}
$$

where $R=\left(a^{*}(b a)^{*} a^{*}\right)^{*}$
Widening cannot infer strings with consecutive stared expressions

Complexity for $M_{1}=\left(P, p_{0}, \delta_{1}\right)$ and $M_{2}=\left(Q, q_{0}, \delta_{2}\right)$

function Subtype $\left(M_{1}, M_{2}, \Delta\right)$
forall $(p \in P)$
if $(\Delta(p) \neq \emptyset \wedge p \leq \Delta(p) \nrightarrow)$ then return maybe else

$$
\begin{aligned}
& R_{p}:=\bigcup_{p^{\prime} \in P}\left\{R \mid \exists \ell \cdot p^{\prime} \leq \Delta\left(p^{\prime}\right) \stackrel{\ell}{\hookrightarrow} p \leq R\right\} \\
& \Delta^{\prime}(p):=\text { if }(p \in w p) \text { then } \Delta(p) \nabla R_{p} \text { else } \Delta(p) \cup R_{p}
\end{aligned}
$$

endif
endfor
if $\left(\Delta^{\prime} \subseteq \Delta\right)$ return Δ else return Subtype $\left(M_{1}, M_{2}, \Delta^{\prime}\right)$ endfunction

The algorithm updates each state of P at most $(c|Q|)^{|w p|}$ times, updating Δ at most $|P|(c|Q|)^{|w p|}$ times, where c bounds the number of times a regular string can be relaxed

Conclusions

- We apply abstract interpretation to session subtyping to distil a more modular and more powerful checking algorithm
- Our approach is layered:
- correctness is established with collecting sim trees;
- collecting sim graphs accommodate trace relaxation;
- traces are finitely represented by regular strings;
- regular strings are finitely computed by widening
- This layering achieves modularity:
- regular strings can be replaced with higher fidelity representations;
- different widening techniques can be explored if required
- A certificate falls out of our subtyping algorithm

