
Asynchronous Subtyping by Trace Relaxation

Laura Bocchi and Andy King Maurizio Murgia

University of Kent Gran Sasso Science Institute
Canterbury, UK L’Aquila, Italy

TACAS, 6-11 April 2024, Luxembourg City

Session subtyping

S2 models a process, which in state p0, either:

▶ sends a message a or

▶ sends a message b and then receives a message c

and does so repeatedly

S1: p0 p1

!b

?d

?c

S2: q0 q1

!a

!b

?c

S1 can be safely substituted for S2 because:

▶ S1 has fewer sends (the absent !a) – co-variant

▶ S1 has more receives (the additional ?d) – contra-variant

Write S1 ≤ S2 iff a program with type S1 can be safely substituted
for a program with type S2.

Why is subtyping useful?

▶ Check whether one component in a distributed system can be
safety substituted with a patch

▶ Encourages a design methodology based on refinement

▶ Subtyping enables protocol optimisation in the order of sends
and recieves are tweaked for improved performance

Why is subtyping tricky?

Consider M2 which models a server producing a news feed (!b) on
request from a client (?a):

M1 : p0 p2 p1

?a

!b!b

M2 : q0 q1

?a

!b

After receiving on a, M2 can mimic the first !b of M1, but it can
only perform the second !b after another ?a recieve

The input ?a is said to guard the output !b

One needs to reason about these dependencies to verify M1 ≤ M2

Timeline for (very closely) related work

2005 S. Gay and M. Hole: Subtyping for Session Types in the Pi
Calculus, Acta Informatica 42, 191–225 (2005).

2017 J. Lange and N. Yoshida: On the Undecidability of
Asynchronous Session Subtyping, FoSSaCS, 441–457 (2017).

2021 M. Bravetti, M Carbone, J. Lange, N. Yoshida and
G. Zavattaro: A Sound Algorithm for Asychronous Session
Subtyping and its Implementation, LMCS 17(1), 1–35 (2021).

2021 S. Ghilezan, J. Pantovic, I. Prokic, A. Scalas and N. Yoshida:
Precise Subtyping for Asynchronous Multiparty Sessions,
POPL, 1–28 (2021).

From a simulation tree [LMCS’21] to a collecting
simulation graph in a nutshell

p0 ≤ q0 p1 ≤ q1 p2 ≤ q0

p0 ≤ T2p1 ≤ q0p2 ≤ T2

p0 ≤ T3 p1 ≤ T2 p2 ≤ T3

p0 ≤ T4. . .

?a !b

!b

?a!b

!b

?a !b

!b

?a

T2= ⟨a : q0⟩
T3= ⟨a : T2⟩
T4= ⟨a : T3⟩

...

p0 ≤ S

p1 ≤ S ′

p2 ≤ S

?a

!b

!b

S =
⋃

i≥0 Si
S ′=S ∪ {q1}

where

S0= {q0}
Si+1= {a · π | π ∈ Si}

S and S ′ can be finitely represented by the regular strings a∗q0 and
a∗q0 + q1 respectively

Is N1 ≤ N2?

N1 :

p0p1 p2

p3

?a

!b

?c

!d

N2 :

q0q1

q2

q3

q4

q5

q6

?a ?c

?a

?c

!b

!b

!d

!b

!d

Note that any cycle in N1 passes through p0; we put wp = {p0}

step 0: A (collecting) simulation graph for proving N1 ≤ N2

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R ′
2 p1 ≤ R3 p1 ≤ R ′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R ′
8

p3 ≤ R9p3 ≤ R9

R0={q0}

Commentary on step 1

▶ N1 receives at p0 with inN1(p0) = {a, c}
▶ Contra-variance of receive requires inN1(p0) ⊇ inN2(q0)

▶ But inN2(q0) = {a, c} so simulation proceeds with

p0 ≤ q0
?a
↪−→ p1 ≤ q1 and p0 ≤ q0

?c
↪−→ p2 ≤ q5

step 1: A (collecting) simulation graph for proving N1 ≤ N2

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R ′
2 p1 ≤ R3 p1 ≤ R ′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R ′
8

p3 ≤ R9p3 ≤ R9

?a
↪−→

?c
↪−→ R0={q0}

R1={q1}
R6={q5}

Commentary on step 2; just p1 ≤ R1 where R1 = {q1}

▶ N1 sends at p1 with outN1(p1) = {b}
▶ Co-variance of send requires outN1(p1) ⊆ outN2(qi) for some

qi after q1
▶ Two contendors for qi are q2 and q3 because:

▶ q1
?a−→ q2 and outN2(q2) = {b}

▶ q1
?c−→ q3 and outN2(q3) = {b}

▶ But q2
!b−→ q0 and q3

!b−→ q3 so simulation proceeds with

p1 ≤ q1
!b
↪−→ p0 ≤ aq0 and p1 ≤ q1

!b
↪−→ p0 ≤ cq3

▶ Can we simulate the send !b and continue at q0 (resp q3)
after a recieve ?a (resp. ?c)

step 2: A (collecting) simulation graph for proving N1 ≤ N2

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R ′
2 p1 ≤ R3 p1 ≤ R ′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R ′
8

p3 ≤ R9p3 ≤ R9

?a
↪−→ !b

↪−→ ▽

▽?c
↪−→

!d
↪−→

R0={q0}

R1={q1}
R6={q5}

R2={aq0, cq3}
R ′
2={a∗q0, cq3}

R7={q6}

step 3: A (collecting) simulation graph for proving N1 ≤ N2

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R ′
2 p1 ≤ R3 p1 ≤ R ′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R ′
8

p3 ≤ R9p3 ≤ R9

?a
↪−→ !b

↪−→ ▽

▽

?a
↪−→ ∪

∪
?c
↪−→

!d
↪−→

?c
↪−→

∪∪

R0={q0}

R1={q1}
R6={q5}

R2={aq0, cq3}
R ′
2={a∗q0, cq3}

R7={q6}

R3={a∗q0}
R ′
3={a∗q0, q1}

R8={q3}
R ′
8={q3, q5}

step 4: A (collecting) simulation graph for proving N1 ≤ N2

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R ′
2 p1 ≤ R3 p1 ≤ R ′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R ′
8

p3 ≤ R9p3 ≤ R9

?a
↪−→ !b

↪−→ ▽

▽

?a
↪−→ ∪

∪

!b
↪−→

▽
▽

?c
↪−→

?c
↪−→

!d
↪−→

?c
↪−→

∪∪

!d
↪−→

∪

∪

R0={q0}

R1={q1}
R6={q5}

R2={aq0, cq3}
R ′
2={a∗q0, cq3}

R7={q6}

R3={a∗q0}
R ′
3={a∗q0, q1}

R8={q3}
R ′
8={q3, q5}

R4={a∗q0, a∗cq3, a∗cq5}
R9={q4, q6}

step 5: A (collecting) simulation graph for proving N1 ≤ N2

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R ′
2 p1 ≤ R3 p1 ≤ R ′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R ′
8

p3 ≤ R9p3 ≤ R9

?a
↪−→ !b

↪−→ ▽

▽

?a
↪−→ ∪

∪

!b
↪−→

▽
▽

?a
↪−→

?c
↪−→

∪

∪

!b
↪−→

?c
↪−→

!d
↪−→

?c
↪−→

∪∪

!d
↪−→

∪

∪

R0={q0}

R1={q1}
R6={q5}

R2={aq0, cq3}
R ′
2={a∗q0, cq3}

R7={q6}

R3={a∗q0}
R ′
3={a∗q0, q1}

R8={q3}
R ′
8={q3, q5}

R4={a∗q0, a∗cq3, a∗cq5}
R9={q4, q6}

R5={a∗q0, q1, a∗cq3, a∗cq5}

Benchmarking

M1 M2 |M1| |M2| [LMCS’21] regex time

ctxta1 ctxta2 7 5 ✗ ✓ 110
ctxtb1 ctxtb2 6 7 ✗ ✓ 41

14may2 (N1) 14may1 (N2) 4 7 ✗ ✓ 10
badseq1 badseq2 5 12 ✗ ✓ 1127

march3testa1 march3testa2 6 7 ✗ ✓ 222
aaaaaab1 aaaaaab2 5 3 ✗ ✓ 43
ex1okloop ex2okloop 10 8 ✗ ✓ 1757

march3testa1 march3testb2 6 10 ✗ ✗ 8

Post morten on march3testa1 ≤ march3testb2

p0

p4 p5

p1

p2

p3

?a

?b

?a

?b
!x1

!x3

?a

!x2

q0

q1

q2q3q4

q5

q6q7

q8

q9

?a

?a

!x1?a

?b

?a

!x2

?a

?a

!x3

?a
?a

p0 ≤ R0

p4 ≤ R4 p5 ≤ R5

p1 ≤ R1

p2 ≤ R2

p3 ≤ R3

?a

?b

?a

?b
!x1

!x3

?a

!x2

Subtyping can be established by replacing

R0 = {q0, {a, b}∗q3, aq8} with R0 = {q0,Rq3,Rq6,Rq8}

where R = (a∗(ba)∗a∗)∗

Widening cannot infer strings with consecutive stared expressions

Complexity for M1 = (P , p0, δ1) and M2 = (Q, q0, δ2)

function Subtype(M1, M2, ∆)
forall (p ∈ P)

if (∆(p) ̸= ∅ ∧ p ≤ ∆(p) ↪̸−→) then return maybe
else

Rp :=
⋃

p′∈P{R | ∃ℓ. p′ ≤ ∆(p′)
ℓ
↪−→ p ≤ R}

∆′(p) := if (p ∈ wp) then ∆(p)▽ Rp else ∆(p) ∪ Rp

endif
endfor
if (∆′ ⊆ ∆) return ∆ else return Subtype(M1, M2, ∆

′)
endfunction

The algorithm updates each state of P at most (c |Q|)|wp| times,
updating ∆ at most |P|(c |Q|)|wp| times, where c bounds the
number of times a regular string can be relaxed

Conclusions

▶ We apply abstract interpretation to session subtyping to distil
a more modular and more powerful checking algorithm

▶ Our approach is layered:
▶ correctness is established with collecting sim trees;
▶ collecting sim graphs accommodate trace relaxation;
▶ traces are finitely represented by regular strings;
▶ regular strings are finitely computed by widening

▶ This layering achieves modularity:
▶ regular strings can be replaced with higher fidelity

representations;
▶ different widening techniques can be explored if required

▶ A certificate falls out of our subtyping algorithm

