
Factory Software Made Simple

Behavioral Types for Local-First Software

1

Roland Kuhn (Actyx)  Hernán Melgratti (UBA)  Emilio Tuosto (GSSI)

ECOOP’23  July 17–21, 2023  Seattle, WA, USA



22

Motivation
What we want:

❏ systems that never stop
❏ “keep going” is more important than “no mistakes”

Therefore:

❏ local agents must be able to act, always
❏ perfect availability (i.e. punting on strong consistency)



33

Key idea

append events to local logs

 → replicate logs

 → merge logs

 → locally interpret logs

 → eventual consensus

instead of coordinating the sequence of transactions added to a global log using consensus



44

Example – global type

note:
❏ non-adversarial setting
❏ roles can be replicated

initial

driving arrived

canceled

start / started @ Taxi

cancel / canceled @ Passenger

finish / finished @ Taxi

record / path @ Passenger



55

Example – local types

initial

driving arrived

canceled

start / started @ Taxi

cancel / canceled @ Passenger

finish / finished @ Taxi

record / path @ Passenger

initial

driving arrived

canceled

? started

 ?canceled

?finished

record / path or ? path

cancel / canceled

initial

driving arrived

canceled

? started

 ?canceled

?finished

finish / finished or ? path

start / started

projection for
Passenger

projection for
Taxi

global
type



assuming a coordination-free total order (e.g. by Lamport timestamp and node ID)

66

Event replication



77

Example execution

Taxi Passenger

initial initialcurrent state:

local log:



88

Example execution

Taxi Passenger

initial initial

cancel / canceledstart / started

current state:

local log:

←concurrent conflicting commands →



99

Example execution

Taxi Passenger

driving canceled

started canceled

current state:

local log:

local (partial) views differ!



1010

Example execution

Taxi Passenger

driving

started
canceled

current state:

local log:
canceled

started

driving

sufficient replication
⇒ eventual consensus



1111

Key idea

append to local logs

 → replicate logs

 → merge logs

 → locally interpret logs

 → eventual consensus

instead of coordinating the sequence of transactions added to a global log using consensus



1212

Eventual Consensus
Not every role sees every event: well-formedness conditions needed!

causality (react to own events, wait for enabling events)

determinacy (must follow along if involved later)

confusion-freeness (guard events must be used unambiguously)

All three are decidable in less than 𝒪(n³).



1313

Sequence of ideas
On typing disciplines:
❏ multi-party session types are easy to understand but not expressive enough
❏ session types with timeouts or failures solve some cases by forcing a new session
❏ mailbox types (de'Liguoro & Padovani, ECOOP’18) allow general concurrency but 

require all messages to be handled, with order chosen by recipient

On conflict resolution:
❏ CRDTs prevent conflicts but are difficult to design
❏ time warp machine (speculative execution and roll-back)

Customer input:
❏ process flow charts, activity diagrams, state machines, collaboration diagrams, …

references are cited in the paper



1414

Current state
❏ proven theory

❏ deadlock-free by construction
❏ eventual consensus
❏ communication-safe by filtering
❏ orphans detected (later: → conflict compensation)

❏ protocol well-formedness and projection conformance checking
is implemented in Haskell & Rust

❏ TypeScript API for machines has evolved already
⇒ ISSTA tool demonstration today (4–5pm)



1515

Future work
❏ refine well-formedness conditions to get closer to necessity
❏ refine evaluation model to achieve branch non-interference
❏ cover adversarial settings



Actyx AG
Ridlerstr. 31B
80339 Munich

Phone: +49 (0)89 9439 7400
Fax: +49 (0)89 9439 7402
contact@actyx.io | www.actyx.io

Actyx AG
Max-Bill-Straße 38
80807 Munich

contact@actyx.io | www.actyx.com

16


