Roland Kuhn (Actyx) =~ Herndn Melgratti (UBA)
ECOOP'23 July 17-21, 2023 Seattle, WA, USA

Motivation

What we want:

A systems that never stop

A "keep going” is more important than “no mistakes”
Therefore:

A local agents must be able to act, always
d perfect availability (i.e. punting on strong consistency)

Key idea

append events to local logs
— replicate logs

— merge logs

— |ocally interpret logs

— eventual consensus

instead of coordinating the sequence of transactions added to a global log using consensus

Example — global type

record/path @ Passenger

finish/ finished @ Taxi

driving

canceled note:

A non-adversarial setting
A roles can be replicated

Example — local types

cancel/canceled

record/path or ?path

/ @ Passenger
Toxi / @ Taxi
a
/ @ driving arrived
initial
7/

led lobal

@n cance (o)
e ° type

finish/finished or ?path
start/started
?finished

driving

canceled

projection for
Passenger

?finished

driving

canceled

projection for
Taxi

Event replication

assuming a coordination-free total order (e.g. by Lamport timestamp and node ID)

1 esh o - ea ! esn
WV I !
£l : e3B | e3B | ! |
- ! | | .
*§.‘ | ! B | mmmmmm= : €2B : » €2B
S| [: : e c2a
S e1A | | - eq | e1A
written by A written by B (virtual) global log local log C

Subscripts of events specify Lamport timestamp and the identity of the machine generating them

Example execution

Taxi Passenger

current state:

local log:

Example execution

Taxi Passenger

current state: @ @

start/started <« concurrent conflicting commands — cancel/canceled

local log:

Example execution

current state:

local log:

Taxi

started

local (partial) views differ!

Passenger

canceled

canceled

Example execution

10

current state:

local log:

Taxi

canceled

started

sufficient replication
= eventual consensus

Passenger

canceled

started

Key idea

append to local logs

— replicate logs

— merge logs

— |ocally interpret logs

— eventual consensus

instead of coordinating the sequence of transactions added to a global log using consensus

11

Eventual Consensus

Not every role sees every event: well-formedness conditions needed!

causalit I/ (react to own events, wait for enabling events)
determinac I/ (must follow along if involved later)

C OI')f usi OI’)-f reeness (guard events must be used unambiguously)

All three are decidable in less than (n?).

12

Sequence of ideas

On typing disciplines:

1 multi-party session types are easy to understand but not expressive enough

A session types with timeouts or failures solve some cases by forcing a new session

d mailbox types (de'Liguoro & Padovani, ECOOP'18) allow general concurrency but
require all messages to be handled, with order chosen by recipient

On conflict resolution:
A CRDTs prevent conflicts but are difficult to design
d time warp machine (speculative execution and roll-back)

Customer input:
A process flow charts, activity diagrams, state machines, collaboration diagrams, ...

references are cited in the paper
13

Current state

4 proven theory
A deadlock-free by construction
A eventual consensus
A communication-safe by filtering
A orphans detected (later: — conflict compensation)

A protocol well-formedness and projection conformance checking
is implemented in Haskell & Rust

A TypeScript API for machines has evolved already
= ISSTA tool demonstration today (4—5pm)

14

Future work

A refine well-formedness conditions to get closer to necessity
A refine evaluation model to achieve branch non-interference
A cover adversarial settings

15

Actyx

Actyx AG
Max-Bill-StralRe 38
80807 Munich

contact@actyx.io | www.actyx.com

