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Boundedness Problem

Is there a bound on the size of the queues for all runs?

UNDECIDABLE for general communicating automata 2

2Brand and Zafiropulo, On communicating finite-state machines, 1983
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Synchronisability

blank blank

existentially k-bounded systems 2 3

synchronisable systems 4

k-synchronisable systems 5 - if every MSC admits a linearisation that can be divided into
“blocks” of at most k messages.

2Lohrey and Muscholl, Bounded MSC communication, 2002
3Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
4Basu and Bultan, Choreography conformance via synchronisability, 2011
5Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,

2018
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Synchronisability

blank blank

existentially k-bounded systems 2 3

synchronisable systems 4

k-synchronisable systems 5

k-exhaustive systems 6 - whenever a send action is enabled, it can be fired within a
k-bounded execution

2Lohrey and Muscholl, Bounded MSC communication, 2002
3Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
4Basu and Bultan, Choreography conformance via synchronisability, 2011
5Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,

2018
6Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019
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at most k sends.
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M is weakly k-synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is a
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MSO definability

matched(x) = ∃y .x ◁ y indicates that x is a matched send.
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Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following
problem is decidable: Given a communicating system S , do we have L(S) ⊆ C?

Synchronisability for an STW-bounded class
reduces to−−−−−−→ bounded model-checking

Bounded model-checking −→ known to be decidable 7

7Bollig and Gastin, Non-sequential theory of distributed systems, 2019
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Result

The set of k-weakly synchronous MSCs are MSO-definable.
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Applying the framework to k-weakly synchronous MSCs

Result

The set of weakly synchronous MSCs are MSO-definable.

Graphical characterisation of weakly synchronous MSCs

No RS edge along any cycle

At most k vertices in any SCC

MSO definable!
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Applying the framework to k-weakly synchronous MSCs

Result

The set of weakly synchronous MSCs has bounded STW.

Eve’s strategy - isolate each exchange, then remove message pairs

Uses at most 4n + 1 colours
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lossiness - some messages may be lost (while sending or in the channel)

corruption - some messages change to others

out-of-order - the FIFO order is no longer maintained
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Comparison of classes

P2P systems

Weakly synchronisable

Existentially bounded

k-MC
Weakly
k-synchronisable
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Contributions and Perspectives

Unifying framework for various notions of synchronisability.8

Applicable to both mailbox and p2p communications.

LCPDL for better complexity.

8Bollig et al. A Unifying Framework for Deciding Synchronisability, 2021
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Contributions and Perspectives

How can we modify these notions to retain their decidability in the presence of errors?

Given an unreliable automaton, can we modify it to retain membership?

Can we use ideas like completely specified protocols to always have information during
errors?
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Thank you!

Questions?
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