
Synchronisability and Communicating Session Automata

Amrita Suresh
University of Oxford

(Joint work with Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne Lozes, and
Nobuko Yoshida)

STARDUST Meeting
Glasgow 2023



Introduction Synchronisability Framework Perspectives

Communicating Automata

Distributed processes

each process is a finite state machine

Pi :

fixed number P1, ...,Pn

communicate using queues (perfect, peer-to-peer)
Pi Pj



Introduction Synchronisability Framework Perspectives

Communicating Automata

Distributed processes

each process is a finite state machine

Pi :

fixed number P1, ...,Pn

communicate using queues (perfect, peer-to-peer)
Pi Pj



Introduction Synchronisability Framework Perspectives

Communicating Automata

Distributed processes

each process is a finite state machine

Pi :

fixed number P1, ...,Pn

communicate using queues (perfect, peer-to-peer)
Pi Pj



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

req

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

reqdata

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

data

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

data

Server-to-Client

ok

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

Server-to-Client

ok

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

Server-to-Client

ok

Server-
to-Logg

er

log0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

Server-to-Client

Server-
to-Logg

er

log0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Client-Server-Logger protocol 1

0 1

2 34

Client-to-Server

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

1Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Communicating Session Automata

Deterministic

0 1

2 34

Client-to-Server

Server-to-Client

Server-
to-Logg

er

0

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ok

cs?data

cs?data

sl!log

sl?log



Introduction Synchronisability Framework Perspectives

Communicating Session Automata

Deterministic
No mixed states

0 1

2 34

Client-to-Server

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?okcs!req

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log



Introduction Synchronisability Framework Perspectives

Boundedness

Boundedness Problem

Is there a bound on the size of the queues for all runs?



Introduction Synchronisability Framework Perspectives

Boundedness

Boundedness Problem

Is there a bound on the size of the queues for all runs?

UNDECIDABLE for general communicating automata 2

2Brand and Zafiropulo, On communicating finite-state machines, 1983



Introduction Synchronisability Framework Perspectives

Boundedness

Underapproximations

Restrict to k-bounded channels.

Every unbounded execution is equivalent to a bounded execution.



Introduction Synchronisability Framework Perspectives

Boundedness

Underapproximations

Restrict to k-bounded channels. Too restricting!

Every unbounded execution is equivalent to a bounded execution.



Introduction Synchronisability Framework Perspectives

Boundedness

Underapproximations

Restrict to k-bounded channels. Too restricting!

Every unbounded execution is equivalent to a bounded execution.



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server

C S L



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

req

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server C S L

req

τ = cs!req



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

reqdata

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server C S L

req

data

τ = cs!req · cs!data



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

data

Server-to-Client

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server C S L

req

data

τ =cs!req · cs!data · cs?req



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

data

Server-to-Client

ok

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server
C S L

req

data

ok

τ =cs!req · cs!data · cs?req ·
sc!ok



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

Server-to-Client

ok

Server-
to-Logg

er

0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server
C S L

req

data

ok

τ =cs!req · cs!data · cs?req ·
sc!ok · cs?data



Introduction Synchronisability Framework Perspectives

Message Sequence Charts

A graphical way to represent executions

Causally independent actions can be rescheduled

0 1

2 34

Client-to-Server

Server-to-Client

ok

Server-
to-Logg

er

log0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server
C S L

req

data

ok
log

τ =cs!req · cs!data · cs?req ·
sc!ok · cs?data · sl!log



Introduction Synchronisability Framework Perspectives

Synchronisability

blank blank

existentially k-bounded systems 2 3 - all accepting executions re-ordered to a k-bounded
execution.

2Lohrey and Muscholl, Bounded MSC communication, 2002
3Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004



Introduction Synchronisability Framework Perspectives

Synchronisability

blank blank

existentially k-bounded systems 2 3

synchronisable systems 4 - send projection equivalent to rendezvous.

2Lohrey and Muscholl, Bounded MSC communication, 2002
3Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
4Basu and Bultan, Choreography conformance via synchronisability, 2011



Introduction Synchronisability Framework Perspectives

Synchronisability

blank blank

existentially k-bounded systems 2 3

synchronisable systems 4

k-synchronisable systems 5 - if every MSC admits a linearisation that can be divided into
“blocks” of at most k messages.

2Lohrey and Muscholl, Bounded MSC communication, 2002
3Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
4Basu and Bultan, Choreography conformance via synchronisability, 2011
5Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,

2018



Introduction Synchronisability Framework Perspectives

Synchronisability

blank blank

existentially k-bounded systems 2 3

synchronisable systems 4

k-synchronisable systems 5

k-exhaustive systems 6 - whenever a send action is enabled, it can be fired within a
k-bounded execution

2Lohrey and Muscholl, Bounded MSC communication, 2002
3Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
4Basu and Bultan, Choreography conformance via synchronisability, 2011
5Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,

2018
6Lange and Yoshida, Verifying Asynchronous Interactions via Communicating Session Automata, 2019



Introduction Synchronisability Framework Perspectives

Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are
at most k sends.



Introduction Synchronisability Framework Perspectives

Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are
at most k sends.

Definition

M is weakly k-synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is a
k-exchange.



Introduction Synchronisability Framework Perspectives

Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are
at most k sends.

Definition

M is weakly k-synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is a
k-exchange.

p q r

m1

m2

m3



Introduction Synchronisability Framework Perspectives

MSO definability

Condition 1

The set of MSCs are MSO-definable.



Introduction Synchronisability Framework Perspectives

MSO definability



Introduction Synchronisability Framework Perspectives

MSO definability

matched(x) = ∃y .x ◁ y indicates that x is a matched send.



Introduction Synchronisability Framework Perspectives

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronisability Framework Perspectives

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronisability Framework Perspectives

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronisability Framework Perspectives

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronisability Framework Perspectives

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronisability Framework Perspectives

Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following
problem is decidable: Given a communicating system S , do we have L(S) ⊆ C?



Introduction Synchronisability Framework Perspectives

Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following
problem is decidable: Given a communicating system S , do we have L(S) ⊆ C?

Synchronisability for an STW-bounded class
reduces to−−−−−−→ bounded model-checking

Bounded model-checking −→ known to be decidable 7

7Bollig and Gastin, Non-sequential theory of distributed systems, 2019



Introduction Synchronisability Framework Perspectives

Applying the framework to k-weakly synchronous MSCs

Result

The set of k-weakly synchronous MSCs are MSO-definable.



Introduction Synchronisability Framework Perspectives

Applying the framework to k-weakly synchronous MSCs

Conflict graph

qp

a

e

b

c

a b

ce

SS

SSRS

SR



Introduction Synchronisability Framework Perspectives

Applying the framework to k-weakly synchronous MSCs

Result

The set of weakly synchronous MSCs are MSO-definable.

Graphical characterisation of weakly synchronous MSCs

No RS edge along any cycle

At most k vertices in any SCC

MSO definable!



Introduction Synchronisability Framework Perspectives

Applying the framework to k-weakly synchronous MSCs

Result

The set of weakly synchronous MSCs has bounded STW.

Eve’s strategy - isolate each exchange, then remove message pairs

Uses at most 4n + 1 colours



Introduction Synchronisability Framework Perspectives

What if the channels are not perfect?

We can assume various sources of unreliability in the channels like:

lossiness - some messages may be lost (while sending or in the channel)

corruption - some messages change to others

out-of-order - the FIFO order is no longer maintained



Introduction Synchronisability Framework Perspectives

What if the channels are not perfect?

We can assume various sources of unreliability in the channels like:

lossiness - some messages may be lost (while sending or in the channel)

corruption - some messages change to others

out-of-order - the FIFO order is no longer maintained



Introduction Synchronisability Framework Perspectives

What if the channels are not perfect?

We can assume various sources of unreliability in the channels like:

lossiness - some messages may be lost (while sending or in the channel)

corruption - some messages change to others

out-of-order - the FIFO order is no longer maintained



Introduction Synchronisability Framework Perspectives

What if the channels are not perfect?

We can assume various sources of unreliability in the channels like:

lossiness - some messages may be lost (while sending or in the channel)
corruption - some messages change to others
out-of-order - the FIFO order is no longer maintained

0 1

2 34

Client-to-Server

Server-to-Client

ok

Server-
to-Logg

er

log0

Logger

0 1

2 34

cs!req

cs!data

sc?oksc?err

sc?ko cs?req

sc!ok

sc!ko

cs?data

cs?data

sl!log

sl?log

Client Server
C S L

req

data

ok
log

τ =cs!req · cs!data · cs?req ·
sc!ok · cs?data · sl!log



Introduction Synchronisability Framework Perspectives

Comparison of classes

P2P systems

Weakly synchronisable

Existentially bounded

k-MC
Weakly
k-synchronisable



Introduction Synchronisability Framework Perspectives

Contributions and Perspectives

Unifying framework for various notions of synchronisability.8

Applicable to both mailbox and p2p communications.

LCPDL for better complexity.

8Bollig et al. A Unifying Framework for Deciding Synchronisability, 2021



Introduction Synchronisability Framework Perspectives

Contributions and Perspectives

How can we modify these notions to retain their decidability in the presence of errors?

Given an unreliable automaton, can we modify it to retain membership?

Can we use ideas like completely specified protocols to always have information during
errors?



Introduction Synchronisability Framework Perspectives

Thank you!

Questions?



p q

a

b

c

d

e



p q

a

b

c

d

e

Eve's turn



p q

b

c

d

e

Adam's turn



p q

b

c

d

e

Adam's turn



p q

b

c

d

e

Eve's turn



p q

b

c

d

e

Eve's turn



p q

b

c

d

e

Eve's turn



c

p q
Adam's turn


	Introduction
	Synchronisability 
	Framework
	Perspectives

