### A model of actors and grey failures

Laura Bocchi, Simon Thompson, Laura Voinea Julien Lange

**University of Kent Royal Holloway, University of London** 

STARDUST meeting - September 12th-13th 2022 @ Kent



#### Context

- Software execution is affected by unpredictability
- Formal models:
  - include reliability primitives e.g., exceptions [Fowler et al. POPL'19], timeouts [Laneve, Zavattaro, FoSSaCS'05][Lopez, Perez, WS-FM'11] ...
  - include link/node failures [Francalanza, Hennessy, CONCUR'05] [Adameir, Peters, Nestmann, FORTE'17]...
  - . . .
- Models mostly focus on fail-stop failures

• Programming practice: handling unpredictability with timeouts, exceptions, supervisors, ...

# **Grey failures**



[Gunavi et al. ACM Transactions on Storage'18]



- Multiple "patterns" of failure
- No precise awareness of the state of health of the system
  - A component appears to be working but is experiencing issues
  - Differential observation



# Contribution

- A formal framework to study the ability of a system to cope with failures
  - a formal model of actors and grey failures



link delay link failure (message loss) node delay node failure (state and mailbox reset)

#### • a definition of resilience and recoverability, based on behavioural equivalence





# Systems: the main ingredients

- Actor-based systems : we borrow mailboxes + timeouts
- Mailboxes -> expressive communication model e.g., many producers-one consumer
  - asynchrony + pattern-matching + selective receive





(**item**, m3)

e.g., [Mostrous, Vasconcelos, COORDINATION'11]



#### Systems

# R ::= n[P](M)(t) $\mid R \mid R$ $\mid 0$

 $P ::= ?\{p_i . P_i\}_{i \in I} \text{ after } P \qquad patter \\ patter \\ \vdots \\ patter \\ patter \\ after \\ n \rightarrow P \\ end \\ | \mu t . P | t | 0$ 

#### Failures

#### $\Delta: \mathbb{N} \times \mathcal{N} \cup (\mathcal{N} \times \mathcal{N}) \mapsto \{ \mathsf{T}, \bot, \pm \}$



#### **Producer - consumer**

instantaneous time www

|         | p | [ | S | leep.        | !c | i  | ter   | n. | 0]   | (0)  |   | C [   |
|---------|---|---|---|--------------|----|----|-------|----|------|------|---|-------|
| ~~~~>   | р | [ | ! | c <b>ite</b> | m. | 0  | ] ( ( | 0) |      | с [  | ? | item  |
| <b></b> | p | [ | 0 | ](0)         |    | С  | [     | ?i | ten  | n -> | 0 | afte  |
| ~~~~>   | р | [ | 0 | ](0)         |    | С  | [     | ?i | .ten | l -> | 0 | aftei |
|         | p | [ | 0 | ](0)         |    | С  | [     | ?i | tem  | _>   | 0 | after |
|         | р | [ | 0 | ](0)         |    | c[ | 0     | ]  | (0)  |      |   |       |

average network latency = 1

?item -> 0 after 3 Cf ](0) time 0 -> 0 after 2 Cf ](0) time 1 r 2 Cf ](0) || sleep.(c,p,item) r 1 Cf ](0) || (c,p,item) time 2

r 1 Cf ](item)





#### **Producer - consumer with link slowdown**

• Reduction on  $(R, \Delta)$ 

| R =             | p | [ | sl | eep. | !c          | it | en  | <b>n.</b> ( | )]    | (0) |    | с [  |
|-----------------|---|---|----|------|-------------|----|-----|-------------|-------|-----|----|------|
| <b>~~~~&gt;</b> | p | [ | !c | iten | <b>n.</b> ( | )] | ( ( | ))          | (     | 2 [ | ?i | tem  |
|                 | p | [ | 0  | ](0) |             | С  | [   | ?i1         | tem   | ->  | 0  | afte |
| ~~~~~           | p | [ | 0  | ](0) |             | С  | [   | ?it         | em    | ->  | 0  | afte |
| ~~~~~           | p | [ | 0  | ](0) |             | С  | [   | Cf          | ] ( ( | ))  |    | (p,c |

- $\Delta(\mathbf{p}, \mathbf{c})(t) = \begin{cases} \pm & \text{if } t \in \{1\} \\ \top & \text{otherwise} \end{cases}$ 
  - ?item -> 0 after 3 Cf ](0) time 0
  - -> 0 after 2 Cf ](0) time 1
  - er 2 Cf ](0) || sleep.(p,c,item)
  - r 1 Cf ](0) || sleep.(p,c,item)
  - ,item)

time 3





#### **Behavioural equivalence**

**Time-abstract weak barbed bisimulation:** 

 $(R_1, \Delta_1) \approx (R_2, \Delta_2)$  implies:

1) If  $(R_1, \Delta_1) \rightarrow (R'_1, \Delta_1)$  then  $(R_2, \Delta_2) \rightarrow (R'_2, \Delta_2)$  and  $(R'_1, \Delta_1) \approx (R'_2, \Delta_2)$ 2) If  $R_1 \downarrow x$  then  $(R_2, \Delta_2) \rightarrow (R'_2, \Delta_2)$  and  $R'_2 \downarrow x$ 

**Barbs:**  $n[!\{n_i m_i \cdot P_i\}_{i \in I}](M)(t) \downarrow !n_i m_i$  $(n_1, n_2, m)(t) \downarrow !n_2 m$  $n[?{p_i . P_i}_{i \in i} \text{ after } P](M)(t) \downarrow ?np_i$ 

Example

 $R = p[sleep.!c item.0](0) \mid c[?item->0 after 3 0](0) (R, \Delta) \approx (R, T)$  $(R, \top) \to * \mathbf{p} [0](0) || \mathbf{c} [0](0)$  $(R, \Delta) \rightarrow^* \mathbf{p} [0](0) \mid | (\mathbf{p}, \mathbf{c}, \text{item}) \mid | \mathbf{c}[0](0)$ 

for all  $i \in I$ 

for all  $i \in I$ 



#### Resilience

- An initial cursed system  $(R, \Delta)$  is **resilient** if  $(R, \Delta) \approx (R, T)$

$$R_1 = p[sleep.!c item.0](0) || c[?item.0]$$

 $R_3 = p \ [\mu t.sleep.!c item.t](0) || p'[\mu t.sleep.!c item.t](0)$  $|| c[\mu t.?item -> 0 after 3 t](0)$ 

 Bisimulation to check the ability of a system to preserve behaviour despite failures •  $p[sleep.!c item.0](0) \mid c[?item->0 after 3 0](0) is not resilient (wrt <math>\Delta$ )  $(R_1, \Delta) \approx (R_1, \mathsf{T})$ m > 0 after 4 0](0)  $R_2 = p \text{ [sleep.!c item.0](0) || c[?item->0 after 3 (?item->0 after 3 0)](0)}$  $(R_2, \Delta) \approx (R_2, \top)$  $(R_3, \Delta) \approx (R_3, \mathsf{T})$ 

#### Recoverability

- Resilience is too strong to capture e.g., retry strategies
  - p[µt.sleep.!c item.?{ok.0, retry.t}](0) ||

• An initial cursed system  $(R,\Delta)$  is *n*-recoverable if there exists R'such that  $(R, \Delta) \to (R', \Delta)$ , time(R') = n, and  $(R, T) \approx (R', \Delta)$ 

Finite thanks to a non-zenoness requirement

 $c[\mu t.?item->!p ok.0 after 3.!p retry.t](0)$ 

### Augmentations

- $R_2 = \mathbf{p[sleep.!c item.0](0)}$ resilient wrt  $\Delta$ c[?item->0 after 3 (?item->0 after 3 0)](0)
  - R is an augmentation of R if (transparency)  $(\overline{R}, T) \approx (R, T)$
  - Moreover,  $\overline{R}$  is **preserving** if for all *n* and  $\Delta$ ,  $(R, \Delta)$  is n-recoverable implies  $(\overline{R}, \Delta)$  is *n*-recoverable

# • We want to assess resilience/recoverability when **improving** it with recovery strategies $R = p[sleep.!c item.0](0) || c[?item->0 after 3 0](0) not resilient wrt <math>\Delta$

# (**improvement**) There exists *n* and $\Delta$ s.t. ( $\overline{R}, \Delta$ ) is n-recoverable and ( $R, \Delta$ ) is not



# Hiding

- Hiding nodes is not enough (too coarse)

#### **Scoped barbs:**

- N is a finite set of elements  $\ln p$  or 2np
- $R \downarrow_N ?np$ if  $R \downarrow 2np$
- $R \downarrow_N ?nm$ if  $R \downarrow 2np$

Augmentations may add actions e.g., circuit breakers, ... so how about hiding?

 $2np \notin N$ and

implies  $!np \vdash_{match} !nm \quad \forall !np \in N$ 

### A characterisation of failures

- Fundamentals of fault-tolerant distributed computing in asynchronous environments [Gartner 99]
- Simulation relations for fault-tolerance [Demasi, Castro, Maibaum, Aguirre]
- Fault-tolerance:

  - masking (safety+liveness) :  $(R, \Delta) \approx (R, T)$ • fail-safe (safety) :  $(R, \Delta) \leq (R, T)$ • non-masking (liveness) :  $(R, \Delta) \gtrsim (R, T)$ , n-recoverability, ...

### **Conclusion & future work**

- Evaluation of recovery strategies reduced to a bisimulation problem
  - resilience, n-recoverability as time-abstract weak barbed bisimulation
  - also augmentation but with existential & universal quantification on n and  $\Delta$
- Open questions
  - automated checking and choice of test suites of failures
  - relationships with session types and use in subtyping



#### • A model for studying grey failures in actor models (mailboxes + timeouts)

#### Thank you!