
A model of actors and grey failures

Laura Bocchi, Simon Thompson, Laura Voinea University of Kent
Julien Lange Royal Holloway, University of London

STARDUST meeting - September 12th-13th 2022 @ Kent

Context
• Software execution is affected by unpredictability
• Programming practice: handling unpredictability with timeouts, exceptions, supervisors, …
• Formal models:

• include reliability primitives e.g., exceptions [Fowler et al. POPL’19],
timeouts [Laneve, Zavattaro, FoSSaCS’05][Lopez, Perez, WS-FM’11] …

• include link/node failures [Francalanza, Hennessy, CONCUR’05]
[Adameir, Peters, Nestmann, FORTE’17]…

• …
• Models mostly focus on fail-stop failures

Grey failures
Fail stop ByzantineGrey

• Multiple “patterns” of failure

• No precise awareness of the state of health of the system

• A component appears to be working but is experiencing issues

• Differential observation

• Diagnosis is challenging

[Gunavi et al. ACM Transactions on Storage’18]

Contribution

• a formal model of actors and grey failures

SYSTEMS FAILURES

link delay
link failure (message loss)

node delay

node failure (state and mailbox reset)

• A formal framework to study the ability of a system to cope with failures

• a definition of resilience and recoverability, based on behavioural equivalence

Systems: the main ingredients
• Actor-based systems : we borrow mailboxes + timeouts

(item,m3)

•Mailboxes ➜ expressive communication model e.g., many producers-one consumer

• asynchrony + pattern-matching + selective receive

(item,m2)

(invoice,m1)

A B C

e.g., [Mostrous, Vasconcelos, COORDINATION’11]

?(item,X).P

Systems

| R ∥ R
| 0

R ::= 𝚗[P](M)(t)

P ::= ?{𝚙i . Pi}i∈I 𝚊𝚏𝚝𝚎𝚛 P

| !{𝚗i mi . Pi}i∈I

| 𝚜𝚕𝚎𝚎𝚙 . P

| μ𝚝 . P | 𝚝 | 0

receive
pattern1 -> P1;
…
patternN -> PN

after
n -> P

end

Δ(𝚗)(t) = { ⊤ if t = n2 (n ∈ ℕ)
⊥ otherwise

Δ : ℕ × 𝒩 ∪ (𝒩 × 𝒩) ↦ { ⊤ , ⊥ , ± }

Failures

Producer - consumer

p [sleep. !c item. 0](0) || c [?item -> 0 after 3 Cf](0)

⇀ ⟿instantaneous time

p 0 || c [?item -> 0 after 2 Cf](0) || sleep.(c,p,item)⇀

p 0 || c [?item -> 0 after 1 Cf](item)

p 0 || c0

⇀
⇀

time 0

p [!c item. 0](0) || c [?item -> 0 after 2 Cf](0)⟿ time 1

p 0 || c [?item -> 0 after 1 Cf](0) || (c,p,item)⟿ time 2

average network latency = 1

Producer - consumer with link slowdown

 p [sleep. !c item. 0](0) || c [?item -> 0 after 3 Cf](0)R =

p 0 || c [?item -> 0 after 2 Cf](0) || sleep.(p,c,item) ⇀

time 0

p [!c item. 0](0) || c [?item -> 0 after 2 Cf](0)⟿ time 1

p 0 || c [?item -> 0 after 1 Cf](0) || sleep.(p,c,item)⟿ time 2

…

Δ(𝚙, 𝚌)(t) = { ± if t ∈ {1}
⊤ otherwise

(p,c)

p 0 || c [Cf](0) || (p,c,item)⟿ time 3

• Reduction on (R, Δ)

Behavioural equivalence

𝚗[?{𝚙i . Pi}i∈i 𝚊𝚏𝚝𝚎𝚛 P](M)(t) ↓ ?𝚗 𝚙i for all i ∈ I

(𝚗1, 𝚗2, m)(t) ↓ !𝚗2 m

𝚗[!{𝚗i mi . Pi}i∈I](M)(t) ↓ !𝚗i mi for all i ∈ IBarbs:

1) If(R1, Δ1) → (R′ 1, Δ1) then (R2, Δ2) →* (R′ 2, Δ2) and (R′ 1, Δ1) ≈ (R′ 2, Δ2)

(R1, Δ1) ≈ (R2, Δ2) implies:

2) If R1 ↓ x then (R2, Δ2) →* (R′ 2, Δ2) and R′ 2 ↓ x

Time-abstract weak barbed bisimulation:

 p[sleep.!c item.0](0) || c[?item->0 after 3 0](0)R =
Example

(R, Δ) p 0 || (p,c,item) || c0→*

(R, Δ) ≉ (R, ⊤)
(R, ⊤) p 0 || c 0→*

Resilience

 p[sleep.!c item.0](0) || c[?item->0 after 4 0](0)R1 = (R1, Δ) ≈ (R1, ⊤)

 p [sleep.!c item.0](0) || c[?item->0 after 3 (?item->0 after 3 0)](0)R2 =

(R2, Δ) ≈ (R2, ⊤)

 p [sleep.!c item.t](0) || p’[sleep.!c item.t](0)
 || c[?item -> 0 after 3 t](0)
R3 = μ𝚝 . μ𝚝 .

μ𝚝 .
(R3, Δ) ≈ (R3, ⊤)

• Bisimulation to check the ability of a system to preserve behaviour despite failures

• An initial cursed system is resilient if

• p[sleep.!c item.0](0) || c[?item->0 after 3 0](0) is not resilient (wrt)

(R, Δ) (R, Δ) ≈ (R, ⊤)

Δ

Recoverability

• An initial cursed system is n-recoverable if there exists
such that , , and

(R, Δ) R′

(R, Δ) →* (R′ , Δ) time(R′) = n (R, ⊤) ≈ (R′ , Δ)

p[sleep.!c item.?{ok.0, retry. }](0) ||
 c[?item->!p ok.0 after 3.!p retry.](0)

μ𝚝 . 𝚝
μ𝚝 . 𝚝

Finite thanks to a non-zenoness
requirement

• Resilience is too strong to capture e.g., retry strategies

Augmentations

•We want to assess resilience/recoverability when improving it with recovery strategies

 p[sleep.!c item.0](0) || c[?item->0 after 3 0](0)R =

• is an augmentation of if
(transparency)
(improvement) There exists n and s.t. is n-recoverable and is not

•Moreover, is preserving if for all n and ,
 is n-recoverable implies is n-recoverable

R R
(R, ⊤) ≈ (R, ⊤)

Δ (R, Δ) (R, Δ)

R Δ
(R, Δ) (R, Δ)

not resilient wrt Δ

resilient wrt Δ
 p[sleep.!c item.0](0) ||  

 c[?item->0 after 3 (?item->0 after 3 0)](0)
R2 =

Hiding

• Augmentations may add actions e.g., circuit breakers, … so how about hiding?

•Hiding nodes is not enough (too coarse)

Scoped barbs:

• is a finite set of elements or

• if and

• if implies

N !𝚗 p ?𝚗 p

R ↓N ?𝚗 p R ↓ ?𝚗 p ?𝚗 p ∉ N

R ↓N ?𝚗 m R ↓ ?𝚗 p !𝚗 p /⊢match !𝚗 m ∀!𝚗 p ∈ N

A characterisation of failures

• Fundamentals of fault-tolerant distributed computing in asynchronous
environments [Gartner 99]

• Simulation relations for fault-tolerance [Demasi, Castro, Maibaum, Aguirre]

• Fault-tolerance:

•masking (safety+liveness) :

• fail-safe (safety) :

• non-masking (liveness) : , n-recoverability, …

(R, Δ) ≈ (R, ⊤)

(R, Δ) ≲ (R, ⊤)

(R, Δ) ≳ (R, ⊤)

Conclusion & future work

•Open questions

• automated checking and choice of test suites of failures

• relationships with session types and use in subtyping

• A model for studying grey failures in actor models (mailboxes + timeouts)

• Evaluation of recovery strategies reduced to a bisimulation problem

• resilience, n-recoverability as time-abstract weak barbed bisimulation

• also augmentation but with existential & universal quantification on n and Δ

Thank you!

