Functional and Reusable

A SPLASH 2021 (series

OOPSLA

A Multiparty Session Typing Discipline for Fault-tolerant
Event-driven Distributed Programming

Malte Viering!, Raymond Hu?, Patrick Eugster? and Lukasz Ziarek?*

1 Technische Universitat Darmstadt malte.viering@posteo.de

2 Queen Mary University of London r.hu@gmul.ac.uk

3 Universita della Svizzera italiana and Purdue University eugstp@usi.ch

4 University at Buffalo Iziarek@buffalo.edu

mailto:malte.viering@posteo.de
mailto:r.hu@qmul.ac.uk
mailto:eugstp@usi.ch
mailto:lziarek@buffalo.edu

Overview: Multiparty Session Types (MSTs)

» A theoretical framework of
types for concurrent
processes that interact in
communication sessions

» Originally developed in

(a variant) of the mt-calculus
[POPLOS]

Static Typing =
Communication Safety

Global type

Projection

[G = ry —+To ll pt Ty — Ty lg .T9 — I';;{ 13 : t,l..g - end }]

________________ B . N —

v

Local types

Type
checking

Processes

)

5(y) = y[ra] 7o y[ra] &{ 13 - Py(y), 1y : 0

y(y) = y[r] 71 - Py(y)]
}

4

[ﬁa(-‘-’) = z[ro] My . z[ro] B 13 : PQ()]

[POPLOS8, JACM16] Multiparty Asynchronous Session Types. Honda, Yoshida and Carbone.
[MScCS16] Global progress for dynamically interleaved multiparty sessions. Coppo, Dezani-Ciancaglini, Yoshida and Padovani.

Failures and MSTs — Existing work

A distributed system is one in which the failure of a computer you
didn't even know existed can render your own computer unusable.
L. Lamport (1987)

Failures are a long standing challenge for MSTs

» [FORTE17] Session types for link failures. Adameit, Peters and Nestmann.

Synchronous communication model; failure masking via default values; not a “programming model”.

» [EsoP18] A typing discipline for statically verified crash failure handling in distributed systems.

Detailed model of asynchronous oracle-based infrastructure (e.g., Zookeeper, Chubby);
try-catch based construct to coordinate process behaviour with oracle; possibly unintuitive programming model

» “Exceptions”: e.g., [FMsD15] Demangeon et al., [mscs1i6] Capecchi et al., [concurogb] Carbone et al.,, ...

“Application-level” failures, rather than actual failures — all processes present and functioning correctly

opt (s[A]!B:1(42) ..) try (m > wi, wy {l1: ., L2 .}) interruptible {
| | opt[@] (s[B]?A:l(x) ..) handle (wqi: ., U t. A-> B: data(). t
wai ., } with {
{wi, wa}:) . B » A: stop()
}

[FORTE17] [ESOP18] [FMSD15]

Failures and MSTs — Intuition/characteristics of the challenges

Ly= ??

B!Hello. u t. C?{ OK1l: t, Byel: end } ??

Classical MSTs

- Deterministic choice

- “Directed” choice
(No “mixed” choice)

- “Balanced” choice cases
(cf. projection)

B!Hello

C?0K1

C?Byel

SEAS

Dagstuhl Seminar 21372, Sep 2021

Behavioural Types: Bridging Theory and Practice

¢ Failure handling: how to describe and handle errors and unexpected behaviours

of distributed system components

Process failures

- Asynchronous, non-
deterministic and concurrent

- “Mixed” choice

- (Unreliable failure detection!)

- Process/role is gone!
“Unbalanced” choice cases

Moreover: not just about

modelling failures

= MSTs for fault-tolerant

application protocols

- Need a range of “advanced”
features...

“A“‘"K% API DOCS - ‘DEE "CN The aocCs...

Spor 342 Overview Programming Guides > Deploying ~ More ~

Cluster Mode Overview () “Generic” process

Worker processes -
--------------------- @ “Assigned” process

X (Suspected) Process failure

Programming model in practice:
Concurrent subtasks
Asynchronous 1/0

» Event-driven concurrency

Protocol features:
- Participant parameterisation

- Dynamic role assignment

- Non-deterministic process failures

Fault-tolerant application

protocols: MSTs for Fault-tolerant Event-driven
» Dynamic replacement of Distributed Programming
failed roles = Unify “regular” I/0 and failure event handling
> Retrying failed segments of > Integration of range of MPST features needed
an ongoing session for fault-tolerance

» Target real-world programming model for DS

[Spark-Cluster-Mode] Spark Cluster Mode overview. https://spark.apache.org/docs/latest/cluster-overview.html
[Spark-Master] Spark Master source code.
https://github.com/apache/spark/blob/1c3bdabc03117494ffbf8fd6863ea82d4961379b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala

https://spark.apache.org/docs/latest/cluster-overview.html
https://github.com/apache/spark/blob/1c3bdabc03117494ffbf8fd6863ea82d4961379b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala

A (Scribble-style) MST-based toolchain for practical distributed programming

. (+Validation) _
Sl LU BT Projection . APl generation ___________________ Type checking S BET AT
Global type » (Local types) ————— > Local | > Distributed
I Communicating Finite | " Protocol AP Endpoint Program
i State Machines : Toolchain generated
| (CFSMs) |
Toolchain generated
| Language-independent Statically-typed endpoint language (Java, Scala, Go, F#, ...)

Scribble [ECOOP17,FASE17,FASE16,TGC13]
» Refinements for multiparty protocols [0OOPLSA20a, CC18]
» Role-parametric protocols [POPL19]

» Exceptions, failure handling and fault-tolerant MSTs
[OOPSLA21, ESOP18, FMSD15]

[Scribble-Tutorial] Scribble-Java tutorial. http://www.scribble.org/docs/scribble-java.html
[Scribble-Java] Scribble-Java Github. https://github.com/scribble/scribble-java

https://github.com/rhu1http:/www.scribble.org/docs/scribble-java.html
https://github.com/scribble/scribble-java

A (Scribble-style) MST-based toolchain for practical distributed programming

(+Validation)
SESATILET Projection API generation __ Event-driven | Type checking User written
Global type > F(_I_.p_gg_l_’gy_gc_e_s_)__i_ ____________ > Local > Distributed
- | Protocol API Endpoint Program

i State Machines i Toolchain generated Scala
“Failure-aware” [CFSMs) (Used to reimplement a
"""""""""" session-typed Spark CM)

application protocols

Toolchain generated

|A d Ll

Language-independent Statically-typed endpoint language (Java, Scala, Go, F#, ...)

A failure model for multiparty sessions

~ Communication model: Communicating FSMs

Message FIFO in each direction between each pair of endpoints
)

Messaging is asynchronous but ordered and reliable (e.g., TCP)

¢ Failure model

R e

Non-deterministic process failures — crash-stop
> Minimum one robust role

Peer-based failure monitoring
» Explicit failure notifications to others — communication model as above

No further assumptions = imperfect failure detection!
» E.g., “false suspicions”

~

[ICALP13] Multiparty Compatibility in Communicating Automata. Deniélou and Yoshida.
[JACM83] On Communicating Finite-State Machines. Brand and Zafiropulo.

“Rolesets” — Practical, lightweight participant parameterisation

/ Roleset — a set of participants
Dynamic role assignment: AN / of the same overall “kind”.
“generic” = “named” Each capable of all the same
Worker processes) T
N T ! behaviour specialisations.
Master process : '
' . ["Executor ‘ |
Standard-MSFrole 5 O
uNamed” ! Driver ‘ cee !
: “Generic” process
| (not specialised so far)
i Executor ” i
Rolesets

» Participant parameterisation — arbitrary number of “generic” processes of the same “kind”
» Assume only some sufficient number at runtime (for role assignment)

» Processes could be dynamically created
» Subsumes standard MSTs (each roleset is a singleton, roles assigned on session initiation)

=
POV NOOULIA WDNER

=

14
15
16
17
18
19
20

root gpr (roles m: M; assign wp.: W; rosets W) {
m - Wy.: Init,.(Info,.).
Wor > M: Ack(Int). Concurrent subsessions
ut.om->W{
AddEx: Spawn gEx(mJ Wprs W; W). t)
Ok: end
}

with wp. @ m.

ects Wp. has failed: replace wp. and retry

end (Sub)sessions also
involve rolesets

}

Jex (roles m: M, wp.: W; assign wg,: W; rosets W) {
m - wg: nit. (Info.,).
Wg, » m: Done. (Int, Int).
m - Wy.: Fin. (Int, Int). end
with w,, @ m. // m suspects wg, has failed: replace wg and retry
m-> W\Fail . (Int, Int).
spawn ge, (m, wp.; W; W). end

Dynamic role assignment

}

(Syntax slightly abridged)

Peer-based failure
monitoring

Explicit failure
coordination

[CONCUR12] Nested Protocols in Session Types. Demangeon and Honda.

Global type for a fault-tolerant application protocol — Spark Cluster Manager (simplified)

Protocol “manually” derived from the
Spark source code

Start from a model of concurrent
subsessions

» Leverage session abstraction to
manage |/O complexity

Generalise the notion of each multiparty
(sub)session to include

- Interactions with rolesets

- Dynamic role assignment

- Failure monitoring of named roles
Subsession spawning forms a parent-
child tree relation

» Leverage as a supervision tree for
peer-based failure monitoring!

Multithreading vs. Event-driven concurrency — (e.g.) A basic Client-Server scenario

Client

Client (\) Client

s

il
WA
WA
11 [RAA
Sl

Multithreaded
Server

Multithreading —

Parallel composition in a typical (session) m-calculus

- Multiple threads: each is an independent unit of
control flow, running a “whole program”

- Threads may block waiting on inputs

Cill Co [Cs | [1 Sl S2 (] Ss]] .

[OSR79] On the Duality of Operating System Structures. Lauer and Needham.

[ECOOP10] Type-Safe Eventful Sessions in Java. Hu, Kouzapas, Pernet and Yoshida.

Event-driven
Server

Event-driven processing —
Reactive handling of event occurrences

Single event loop thread: fires “program fragments”
to handle event occurrences one-by-one

Control flow (i.e., handler firing) externally driven by
event occurrences (inversion of control)

Event loop (should) never blocks

[OOPSLA20] Statically verified refinements for multiparty protocols. Zhou, Ferreira, Hu, Neykova and Yoshida.

Event-driven multiparty sessions in Scala

root gp. (roles m: M; assign wp.: W; rosets W) {
m - wp.: Init,.(Info,.) ¥ Output
Wp. > m: Ack(Int).
Htem->W{ ‘xlnput
Add., : spawn RunEx(m, wp.; W; W). €

Ok: end .
} Subsession initiation

Session-typed event loop

with wp. @ m. <+ . . _
m - W: Faily. (Int). Eail - Tracks the “current protocol state” at run-time
spawn gp.(m; W; W). end aiiure - Dispatches events based on the pair (current state, event occurrence)

} (suspicion) - Branching/selection enacted by handler dispatch
- Recursion driven by repeat (state+event) occurrences

Jex (roles m: M, wp.: W; assign wp.: W; rosets W) {

m - Wg: Init. (Info.,). : ;
We, > m DoneEXEInt,EI)nt). A (e) { case (d, ¢) => (.d'., .c'.) }
m - wp.: Fin. (Int, Int). end
with wg, @ m. — Output
m-> W Fail, (Int, Int). // I/0 event(s) // Event handler functions
spawn ge,(m, wp.; W; W). end A(SndInit,.) { case (s, c: M1) => (s, ¢ ! Inity,.(.)) Input
} A(RcvAck) { case (s, c: M2) => (s, (c ? ())fjﬁ}/_
A(SndAdd.,) { case (s, c: M3) if s.workRemaining() => (s, c ! Addg()) }
A(Sndok) { case (s, c: M3) => (s, c ! Ok()) }
A(Spw.,) { case (s, c: M4) => (s, c.init(..)) }
A(Sus,,., SndFail,) { case (s, c: M6) => (s, c.failure() ! Fail,.(s.appId)) }
A(Spw,,.) { case (s, c: M8) => (s, c.init(..)) }
_,f Failure

Subsession initiation (suspicion)

Projection on to rolesets — Representation as “failure-aware” CFSMs

|II

“Top-leve

global type

\g={gom Jex }

GIM

Ly={go-I'M,
gEX er

gDr‘rm;
GEx rm}

Lw={gDr'rW: gDr‘rWDrv
gI_Ex rW, gEx rWDr‘\.gEx rWEX}

wD'InitDr,,\ wD?Ack ,

~(0— ©

Workers!0k

wD@m Workers!FailDr RunDr(. ..

©

\

m?InitDr

NGy

®

’O

m?AddEx

r!'1Output r?lInput SubProto(...) Spawn

r@r’ Suspicion

© End (Performs a final sync. between all subsess. participants)

(Scala) API generation for Event-driven session programming

" D!InitD Ma D?Ack Mo D@ IV|7w kers!FailD oy RunDr(...) end
wD!InitDr wD?Ac wD@m orkers!FailDr
-® ‘0 @@ ® ©)
Roleset M
State Chan.type 1/O methods Return type State Chan.type 1/O methods Return type
1 M1 I'(InitDr) M2 59 End
2 M2 ?() (Ack, M3) 6 M6 failure() M7
3 M3 I (AddEx) M4 7 M7 I (FailDr) M8
I (0k) End 8 M8 init(..) End
4 M4 init(..) M3 (N.B. ! And ? are method names)
def runNormalM(Data d, M1 ml): End)))
val m2 = mil f InitDr(.)) { (For safety, this basic approach assumes dynamic
var m3 = (m2 ? ()). 2 checking of linear usages of session channels —
while (.d.workRemaining()..) { specifically, no channel instance used more than
m3 = (m3 ! AddEx(..)). ..init(..).. once... more on linearity later!)
}
m3 ! Ok(..)
} [FASE16] Hybrid Session Verification through Endpoint APl Generation. Hu and Yoshida.
[CONCURO04] Session Types for Functional Multithreading. Vasconcelos, Ravara, and Gay.

(Scala) API generation for Event-driven session programming

wD!InitDr wD?Ack ’ wD@m _Workers!FailDr — RunDr(...)
O, (2) > Workers!AddEx (&) 7) 5(8) ©)
Workers!0Ok
Roleset M
State Chan.type 1/O methods Return type Event type State Chan.type 1/O methods Return type Event type
1 M1 I'(InitDr) M2 SndInitDr 59 End
2 M2 ?() (Ack, M3) RcvAck 6 M6 failure() M7 SuswD
3 M3 I (AddEx) M4 SndAddEx 7 M7 I (FailDr) M8 SndFailDr
I (0k) End SndOk 8 M8 init(..) End SpwRunDr
4 M4 init(..) M3 SpwRunEx (N.B. ! And ? are method names)
Session channel on which
For each session 1/O event, event has occurred
rovide a callback function to ¥
P A (e) { case (d, ¢) => (.d'., .c'.) }
handle occurrences of that event 1 X
Event type Data object (not

(singleton value) important re. typing)

Event-driven endpoint implementation in Scala

wD!InitDry,\ wD?Ack)

D @

wD@m Workers!FailDr RunDr(...)
Workers!AddEx (&) x7) x(8) >(:)

Roleset M Workers!Ok
olese
A (e) { case (d, ¢) => (.d".., .c'..) }
[Output
// I/0 event(s) // Event handler functions f/
1 A(SndInit,)) { case (s, c: ML) => (s, c ! Initwﬁggjfi,—————— Input
2 A(RcvAck) { case (s, c: M2) => (s, (c ? ())=*2) }
3 A(SndAdd.)) { case (s, c: M3) if s.workRemaining() => (s, c ! Addg()) }
3 A(Sndok) { case (s, c: M3) => (s, c ! Ok()) }) ..
4 A(Spwey) { case (s, c: M4) => (s, c.init(..)) } Failure (suspicion)
6 A(Sus,., SndFail,) { case (s, c: M6) => (s, c.failure()"! Fail,.(s.appId)) }
g8 A(Spw,,.) { case (s, c: M8) => (s, c.init(..)) }
X
. n
Session-typed event loop Subsession initiation

Tracks the “current protocol state” at run-time

Dispatches events based on the pair (current state, event occurrence)
Branching/selection enacted by handler dispatch

Recursion driven by repeat (state+event) occurrences

Event-driven endpoint implementation in Scala

wD!InitDr wD?Ack De Workers!FailD RunDr(...)
- (2) Workers! AddEx (6) el (7) orters e r@ ©)
Workers!Ok
Roleset M
...alternatively: don't
// expose the channels!
o e
// I/0 event(s) // Event handler functions] IInea.rltyVIolatlons
1 A(SndInit,)) { case (s) => (s, Inity.(..)) } impossible
2 A(RcvAck) { case (s, x: Ack) => (s, ..) }
3 A(SndAdd.)) { case (s) if s.workRemaining() => (s, Add., ()) }
3 A(Sndok) { case (s) => (s, Ok()) }
4 A(Spwey) { case (s) => (s,)}
6 A(Susp., SndFail,.) { case (s) => (s, Fail,.(s.appId)) }
g A(Spw,.) { case (s) => (s,)}

Session-typed event loop

Tracks the “current protocol state” at run-time

Dispatches events based on the pair (current state, event occurrence)
Branching/selection enacted by handler dispatch

Recursion driven by repeat (state+event) occurrences

[OOPSLA20] Statically verified refinements for multiparty protocols. Zhou, Ferreira, Hu, Neykova and Yoshida.

Properties of failure-prone, event-driven sessions

€<1>WD!InitDr%§> wD?Ack e ® wD@m %2>Workers!FailDi<§> RUHDF(»--)>@:)
Workers!0Ok
Roleset M
// I/0 event(s) // Event handler functions
1 A(SndInit,)) { case (s, c: ML) => (s, c ! Init,.(.)) }
2 A(RcvAck) { case (s, c: M2) => (s, c?(). 2) }
3 A(SndAdd.)) { case (s, c: M3) if s.workRemaining() => (s, c ! Add,()) }
3 A(Sndok) { case (s, c: M3) => (s, c ! Ok()) }
4 A(Spwe,) { case (s, c: M4) => (s, c.init(..)) }
6 A(Sus,., SndFail,) { case (s, c: MB) => (s, c.failure() ! Fail,.(s.appId)) }
8 A(Spw,,.) { case (s, c: M8) => (s, c.init(..)) }

THEOREM 6.3 (SUBJECT REDUCTION). Let+ (©, F, (vs: G) Ny) such that (04, 1, (vs: G) N;) —
(2, F2, (vs: G) Ny). Then+ (05, %>, (vs: G) N»).
(Perhaps not
actually failed!)
COROLLARY 6.4 (COMMUNICATION SAFETY). Lett+ (O, F, (vs:G) N)). For evdry session s in © and
unsuspected p in s, p has the following properties: (i) p does not have a reception error; (ii) p is not
stuck; and (iii) p does not have a non-covered failure.

No unknown
messages

No WFC between Never left permanently
unsuspected hanging due to a failure

- Session typing within
handlers: a single session
channel and “flat” — much
simpler than standard
session processes!

Instead:
- Non-blocking handlers

- Coverage (and global type
structure/WF)

Properties of failure-prone, event-driven sessions

€<1>WD!InitDr%§> wD?Ack e ® wD@m %2>Workers!FailDi<§> RUHDF(»--)>@:)
Workers!0Ok
Roleset M
// I/0 event(s) // Event handler functions
1 A(SndInit,)) { case (s, c: ML) => (s, c ! Init,.(.)) }
2 A(RcvAck) { case (s, c: M2) => (s, c?(). 2) }
3 A(SndAdd.)) { case (s, c: M3) if s.workRemaining() => (s, c ! Add,()) }
3 A(Sndok) { case (s, c: M3) => (s, c ! Ok()) }
4 A(Spwe,) { case (s, c: M4) => (s, c.init(..)) }
6 A(Sus,., SndFail,) { case (s, c: MB) => (s, c.failure() ! Fail,.(s.appId)) }
8 A(Spw,,.) { case (s, c: M8) => (s, c.init(..)) }

Every (sub)session
is completed

THEOREM 6.6 (GLOBAL PROGRESS). Assume an initial systgm + (04, F1, (vs : G) Ny) and a reduction
(©1, F1, (vs: G) Np) =% (O3, Fa, (vs: G) Ny). Then either O, is empty, or without using Susp we have
(@2, F2, (vs:G) N2) — (03, F3, (vs:G) N3). Z

L
Can make a step... ...without "cheating"

by just failing (if stuck)

[MscCS16] Global progress for dynamically interleaved multiparty sessions. Coppo, Dezani-Ciancaglini, Yoshida and Padovani.

- A process never engages in 1/0
unless event is ready

- Progress of individual
(sub)sessions is independent

Thus, a (sub)session action is:

- Itself never blocked if fired,
i.e., when actually executed

- Never blocked from firing by
actions of another (sub)session

(Caveat: data object guards...)

Prototype implementation — Practical evaluatio

Fai | ure-aware extension Of (1) Core MPSTs (MP interactions, choice, recursion) (3) Application-level exceptions/interrupts
exam ples from MST literature 2-Buyers, Streaming [Honda et al. 2016 Two Factor [Fowler et al. 2019]
Sutherland-Hodgman [Neykova et al. 2018] Resource Control [Demangeon et al. 2015]

WebCrawler [Neykova and Yoshida 2017]

- Subsumes classical MSTs _ . o
(2) Dynamic/parameterized participants
Interruptible 3-Buyers [Capecchi et al. 2016]

- Rolesets support patterns involving
. £ ticinants 3-Buyers [Coppo et al. 2016] T : :
parameterised numbers of particip N-stage Pipe [Castro-Perez et al. 2019] Basic failure handling (cf. Fig. 12)
- Can encode “application-level failures” N-stage Ring [Castro-Perez et al. 2019] Failure-Aware Streaming [Viering et al. 2018]
(exceptions/interrupts)

L3 . p
Session-CM: Session-typed @%L@
60 [0 session-cM [0 Spark-CM (i Normalized execution time >
Spark cluster manager - . I
- Executes third-party Spark applications I} - = @
without code modification 40

- E.g., TPC-H benchmark suite 30

e vereas 0% Wl D AN

(1,050 1114} {1.07: (107! {1111 11.06! i1.09: (109! {1.09! 1.08! {1.1: (112 P 107! 1107 1110 i1.050 (101

Time (sec.)

- Failure scenario
(Q18, Executor killed after 20s):
overhead ~10% TPC-H Spark (database ~10GB).
Each query as a separate application.
Three servers.

—
10
Do
Do

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q2

[TPCH] TPC-H benchmark suite. http://www.tpc.org/tpch/
[TPCH-Spark] TPC-H Spark. Savvides. https://github.com/ssavvides/tpch-spark

http://www.tpc.org/tpch/
https://github.com/ssavvides/tpch-spark

