Special Delivery: Programming
with Mailbox Types

Simon Fowler, Simon J. Gay, Phil Trinder, and Franciszek Sowul

STARDUST Meeting, University of Kent
12th September 2022

S~ STARDUST

a| University

> of Glasgow

><]
><]
><]
><]

XK

v
53
=
=
=

KKK
-
><]

" 1Int.!Int.?Bool.End
™ 2Int.?Int.!Bool.End

Channels

XK

Actors

 Communication is unidirectional and possibly

« Communication is ordered and bidirectional . .
unordered (selective receive)

* Anonymous processes, multiple, named

. * Named processes, associated with incoming
channel endpoints

mailbox

* Easy to type; difficult to distribute - Easy to distribute; difficult to type

empty_future() —
receive

{ put, X } —> full _future(X)
1) end.

Get Get

full future(X) —>
receive
{ get, Pid } —>
Pid ' { reply, X },
full future(X):
{ DUtr _ } —>
erlang:error("Multiple writes")
Future: Placeholder variable end.

main() —
: Future = spawn(future, empty_future, [1),
Can be written once, read many Future ! 1 put, 5 3,
times Future ! { get, self() },
receive
{1 reply, Result } —

Multiple writes: error io: fwrite("~w~n", [Result + 10])
end.

Put

Empty

empty_future() —
receive
{ put, X } —> full_future(X)
end.

full future(X) ->
receive
{ get, Pid } —
Pid ! { reply, X },

Protocol violation { fu%qu;ure(xn
!) put, _ r ==
Two 'put’ messages. erlang:error("Multiple writes")
: : d.
Manifests as a runtime error. ="
main() —

Future = spawn(future, empty_future, [1),
Future ! { put, 5 },
Future ! { put, 10 },
Future ! { get, self() I,
receive

{ reply, Result } —>

io: fwrite("~w~n", [Result + 10])

end.

empty_future() —>
receive

{ put, X } => full future(X)
end.

full future(X) —>

receive
]] { get, Pid } —>
Protocol violation ﬁigl!f{trepby(; X},
ull future(X);
No 'put’' message. { put, _} —>
Future never resolved erlang:error("Multiple writes")
. end.
main() —>

Future = spawn(future, empty_ future, [1),
Future ! { get, self() I,
receive
{ reply, Result } —>
io:fwrite("~w~n", [Result + 10])
end.

empty_future() —>
receive

{ put, X } —> full_future(X)
end.

full future(X) —>

receive
i i { get, Pid } —
Protocol violation { fu%qu;ure(X):
!] put, _ —
No ‘reply’ message. erlang:error("Multiple writes")
d.
Requests go unanswered. ="
main() —

Future = spawn(future, empty_future, [1),
Future ! { put, 5 },
Future ! { get, self() I,
receive
{ reply, Result } -—>
10: fwrite("~w~n", [Result + 10])
end.

empty_future() —
receive

{ put, X } —> full_future(X)
end.

full future(X) —
receive
{ get, Pid } —
Pid ! { reply, X },
full future(X):
Unexpected Message { put, _} —>

. erlang:error("Multiple writes")
Message Is never handled. end.

main() —>
Future = spawn(future, empty_future, [1),
Future ! { put, 5 },
Future ! { surprise, 10 },

Future ! { get, self() I,
receive

{ reply, Result } —>
io: fwrite("~w~n", [Result + 10])
end.

empty_future() —
receive

{ put, X } —> full _future(X)
end.

full future(X) —>
receive

{ get, Pid } —>
Payload Mismatch i reeore
“lient code expeCtS Al integer; { gg{z’ana:ir;Zr("Multiple writes")
gets a string. end.
main() —>

Future = spawn(future, empty_future, [1),
Future ! { put, "hello" },
Future ! { get, self() 1,
receive
{ reply, Result } —>
io: fwrite("~w~n", [Result + 10])
end.

empty_future() —>
receive

{ put, X } —> full_future(X)
end.

full future(X) —>

receive |
Self-deadlock L get, Pid » —>
. Pid ! { reply, X },
Attempting to read a reply { futl_fu’;ure(X);
" pU | R —>
message before sending a erlang:error("Multiple writes")
request. end.
main() —>

Future = spawn(future, empty_ future, [1),
Future ! { put, 5 },
receive
{ reply, Result } -—>
10: fwrite("~w~n", [Result + 10])
end,

Future ! { get, self() }.

Mailbox Types for Unordered Interactions

Ugo de’Liguoro
Universita di Torino, Dipartimento di Informatica, Torino, Italy
deligu@di.unito.it

https: / /orcid.org /0000-0003-4609-2783

Luca Padovani
Universita di Torino, Dipartimento di Informatica, Torino, Italy
luca.padovani@unito.it

https: //orcid.org /0000-0001-9097-1297

— Abstract

We propose a type system for reasoning on protocol conformance and deadlock freedom in net-
works of processes that communicate through unordered mailboxes. We model these networks in
the mailbox calculus, a mild extension of the asynchronous w-calculus with first-class mailboxes
and selective input. The calculus subsumes the actor model and allows us to analyze networks
with dynamic topologies and varying number of processes possibly mixing different concurrency
abstractions. Well-typed processes are deadlock free and never fail because of unexpected mes-
sages. For a non-trivial class of them, junk freedom is also guaranteed. We illustrate the expres-
siveness of the calculus and of the type system by encoding instances of non-uniform, concurrent
objects, binary sessions extended with joins and forks, and some known actor benchmarks.

2012 ACM Subject Classification Theory of computation — Type structures, Theory of com-
putation — Process calculi, Software and its engineering — Concurrent programming structures,
Software and its engineering — Message passing

Keywords and phrases actors, concurrent objects, first-class mailboxes, unordered communica-

tion protocols, behavioral types, protocol conformance, deadlock freedom. junk freedom

E,F =

Mailbox Types: Type mailboxes with
commutative regular expressions

O|1|m|E®F| EOF | E*
N

Unrelialienptddbizatiddadtiom cxiiasinog Adatbownzpntaining
message with t&gon¥ E and F many Es

A mailbox type is a capability
associated with a pattern:

\E ?

Key ideas:

 Each mailbox has many send references,
but precisely one receive reference

e Sends and receives must balance out

e Subtyping: relies on pattern inclusion

EmptyFuture = ?(Put[Int] © Get[ClientSend]")
FullFuture 2 ?Get[ClientSend]”
ClientRecv £ 7?Reply]|Int]
ClientSend %= !Reply|[Int]
emptyFuture(self) = self?Put(x).fullFuture(self, x)
fullFuture(self,x) = free self.done
+ self?Get(sender) . (sender!Reply[x] || fullFuture(self, x))

+

self? Put(x) . fail self

(vfuture) (emptyFuture(future) || future! Put[5] ||
(vself) (future! Get [self] || (self? Reply(x) .free self.print(intToString(x)))

A process calculus shows a snapshot of a concurrent
system

A programming language must be able to describe the
program a user writes

def emptyFuture(self: EmptyFuture): 1 {
guard self {

receive Put[x] from self — fullFuture(self, x)

def client(): 1 {

let future = new in
spawn emptyFuture(future);
let self = new in

}

) future!Put[5];
def fullFuture(self: FullFuture, value : Int): 1 { future! Get [self];
guard self { guard self {
free — () receive Reply [result] from self -
receive Get [user] from self— free self;
user!Reply [value] : print(intToString(result))
fullFuture(self, value) \ }
}

Language Integration

Challenge 1: Static / Dynamic Distinction

(vfuture) (emptyFuture(future) || future! Put[5] ||
(vself) (future! Get [self] || (self? Reply(x) . free self.print(intToString(x)))

Names

* Process calculus: know runtime names a priori as they are part of a process

*In a PL: only dynamic: generated by the semantics.

 Distinction incompatible with alias control / deadlock-freedom techniques used by
the mailbox calculus

Sequential composition?
Variable rebinding?

Challenge 2: Name hygiene

def useAfterFree(x : ?Message[1]7):1 {
guard x {

receive Message[y] from z —
x !'Message[()];

A guard 'uses up' a variable; x must not be in
scope afterwards

useAfterFree(z) Easy to do in a linear system; more difficult in a
free — multi-writer system where variables can be

x !Message[()] used more than once
}

}

Challenge 2: Name hygiene

. ? *Y.
def useAfterFree(x : ?Message[1]%):1 { def useAfterFree(x : ?Message[1]7):1 {

: let =
leta=xin
guard x {
guard a { .
receive Message [y] from z — receive Message[y] from z —
x !Message[()]; x ! Message[()];
useAfterFree(z) | useAfterFree(z)
free —
free —
x !'Message[()] x !Message[()]
|)
} } in x !Message[()]
}

...and must be robust to renaming / aliasing, and evaluation contexts!

Need: Only one variable name in scope for each runtime name

Challenge 3: Aliasing via Communication

guard a {
receive m[x] from y—
b!'n|b];
a—mlb] | binlx]; — fre“e[a]
free y

}

Cannot allow communication to introduce
unsafe aliases!

Quasi-Linear Types

Quasi-Linear Types

Naoki Kobayashi

Department of Information Science, University of Tokyo

Abstract

Linear types (types of values that ci
have been drawing a great deal of a
are useful for memory management, il
structures, etc.: an obvious advantag
linear type can be immediately deallo
However, the linear types have not kb

M

email:koba@is.s.u-tokyo.ac.jp

Linear Types for Packet Processing

Robert Ennals!, Richard Sharp?, and Alan Mycroft!

! Computer Laboratory, Cambridge University
15 JJ Thomson Avenue, Cambridge, CB3 OFD, UK.
{robert.ennals,am}@cl.cam.ac.uk
2 Intel Research Cambridge,

15 JJ Thomson Avenue, Cambridge, CB3 OFD, UK.

richard.sharp@intel.com

Abstract. We present PACLANG: an imperative, concurrent, linearly-
typed language designed for expressing packet processing applications.
PACLANG’s linear type system ensures that no packet is referenced by
more than one thread, but allows multiple references to a packet within a
thread. We argue (7) that this property greatly simplifies compilation of
high-level programs to the distributed memory architectures of modern
Network Processors; and (4i) that PACLANG’s type system captures that
style in which imperative packet processing programs are already written.
Claim (47) is justified by means of a case-study: we describe a PACLANG
implementation of the IPv4 unicast packet forwarding algorithm.
PACLANG is formalised by means of an operational semantics and a
Unique Ownership theorem formalises its correctness with respect to
the type system.

Quasi-linear typing: each reference
can be used once per process as a
full ("returnable”) reference, but many
times as a partial ("usable") reference

Returnable references can be let-
bound; returned as part of an
expression; and guarded upon

Returnable reference must be the
last occurrence of the name in the
thread

Usable references can only be used
as the target of a send

Quasi-Linear Types: Example

def client(): 1 {

let future = new in

spawn emptyFuture(future);
let self = new in !Reply°
future!'Put[5]; A

future! Get [self]; > .
guard self (&= ° Reply

receive Reply [result] from self -

free self; 4—7 1°
print(intToString(result))

}
}

Typable: Returnable use always last in scope (note that 'self’ is
consumed by 'guard’ and rebound)

Quasi-Linear Types: Example

def useAfterFree(x : (?Message[1]7)®): 1 {
leta = xin)
guard a { ?(Message)’
receive Message[y] from z —
!Message° 4 x!Message|[()];
useAfterFree(z)
free —

IMessage” g x|!Message[()]
}
}

Untypable: variable 'x' appears after returnable occurrence

Mailbox types
Mailbox patterns

Base types

Types

Usage annotations
Usage-annotated types

Variables
Definition names

Definitions
Values

Terms

Guards

X, Y,z

V,.W
L, M,N

lE | ?E
O|1|m|E®F | EOF | E*
1| Int | String | ---

C|lJ
o| e
C|J"

def f(x : A): B {M}
x | c

_)
Vi]letx:T=MinN | f(V)

— —
spawn M | new | V!m[W] | guard V {G}
fail | free — M | receive m[x] from Yy M

Selected Typing Rules (Send)

_)
Message with tag m has payldaehbtoesist have usable mailbox type | m

' '

Sm=T TFV:'m°
(l"l-' F Wi [Ti)ie1.n <—— fpeptiion

(usable)

C+T +...+T,F VIn[W]:1

1

Send term has unit type, no shared linear variables between target and each payload

Selected Typing Rules (Let)

Ensure subject of let has returnable type

!
[T +FM:|T] [o,x:|T|+ N:B
1ol Fletx: T=MinN:B
!

Seqguencing of environments: ensures mailbox types combine correctly,
ensure quasilinear well-formedness properties

Note: Type annotation optional

Type Combination

lEm 'F=1(EQ®F) lEm?(EOQF) =?F ?(EOQF)m'E="?F
Combining two send Combining a send and receive: types
mailbox types: send both balance out
oOp O =20 OPbe®— @0

~

Can combine two usable types, or a usable and a returnable type
Note: Not reflexive, nor symmetric

Selected Typing Rules (New and Spawn)

I' - M:1

-+ new: ?1° I'| F spawn M :1

" ~

New mailbox: Returnable, empty Spawn: environment treated as usable

recelve capabillity. . L
Ensures all sends balanced by receives (quasi-linearity is thread-local)

Metatheory

Theorem (Preservation):
If"iIsreliable, ' €, and € — 9, then ' -+ 9.

Corollary (Mailbox Conformance):
If " Is reliable and T"' - €&, then € —* Z[fail V].

Nontrivial: requires extensive reasoning about contexts and quasi-
linearity

Algorithmic Typing &
Implementation

How do we write a typechecker?

The declarative system cannot be implemented as-is:

 Nondeterministic environment & type splitting
* Environment subtyping
e Pattern inclusion

Key idea: Produce a type environment and a
set of pattern inclusion constraints

Bidirectional Typing

I I I_ M : A "Under type environment 1, we can
synthesise type A for term M"

I I I_ M ¢ A "Under type environment 1, we can
check that term M has type A"

Backwards Bidirectional Typing
'Synthesise type 1 for term P,
P : T } @ * @ producing type environment ® and
? pattern inclusion constraints ®"
"Check that term P has type type 7,
P ¢ T } @ * @ producing type environment ® and
? pattern inclusion constraints ®"
Key idea: Stay in checking mode as much as possible to

preserve type information and propagate to variables
(originally introduced by Zeilberger, 2015)

TC-VAR

xe<=terx:17. 0

Variable rule: a checking case, constructing a singleton environment

Check target can send

Lookup payload types for message with tag m

message tag m Check payloads have
correct types

TS-SEND
S(m) =7 VeIn®» 0o
(W; &< [x;]| » @;; (I),{)iel..n O + @i +---+0, » 0;0”

e / / ’/
Vin[wW] =1»0;oUd;U---UD, UD

T Calculate disjoint combination of produced

typing environments
Synthesise unit type for the send term, producing

combined environment Theta and the union of all
constraint sets

Check that the bodiydpest produced type
typemvironment, see that x has type 7

.

O <oy O1,x:1;, g returnable(1)
P& 1r» Oy; Oy Or 501 » O; D3

Oy U P3

Ensure that 7 Is returnable

let x =PIin Q0 < o » O; O

Check that P has type 7 Calculate algorithmic sequencing of
environments

Note: Revert to synthesis if x is not used in Q

Metatheory

Theorem (Algorithmic Soundness)
e If P < 7»0O; D and = is a usable solution for @, then Z(®) = E(P) : E(7)
e If P = 7»0®; P and Z is a usable solution for @, then Z(O) - Z(P) : E(7)

Conjecture (Algorithmic Completeness)

fI’' M :A ~= P, then there exist some ®, ® and a usable solution = of ®
suchthat P < A»®; ® wherel < E(O).

Implementation

Pre-typing

Constraint Constraint
Solving Generation

Satisfiability
Checking (Z3)

Pattern inclusion: closed form solution thanks to Hopkins & Kozen (1999)
Check consistency by translating into Presburger formulae & offloading to Z3

Wrapping up

Mailbox ITypes: Type the mailbox, not the process

First integration of mailbox types into a programming language:
* Vital use of quasi-linear types to handle many-writer, single-reader pattern

Sound and complete algorithmic type system based on backwards
bidirectional typing

Future work

 Compilation (Ongoing, with Franek Sowul)

» Constraint-based co-contextual typing algorithm

 More sophisticated alias analysis

* Jool integration (Erlang, Elixir...)

* Other many-writer paradigms (Publish-subscribe”? Typestate?)

