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Channels Actors

• Communication is ordered and bidirectional 


• Anonymous processes, multiple, named  
channel endpoints 


• Easy to type; difficult to distribute

• Communication is unidirectional and possibly 
unordered (selective receive) 


• Named processes, associated with incoming 
mailbox


• Easy to distribute; difficult to type

?Int.?Int.!Bool.End
!Int.!Int.?Bool.End



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      Pid ! { reply, X },

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { put, 5 },

  Future ! { get, self() },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end.


Future: Placeholder variable


Can be written once, read many 
times


Multiple writes: error



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      Pid ! { reply, X },

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { put, 5 },

  Future ! { put, 10 },

  Future ! { get, self() },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end.


Protocol violation 
Two 'put' messages.


Manifests as a runtime error.



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      Pid ! { reply, X },

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { get, self() },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end.


Protocol violation 
No 'put' message.


Future never resolved.



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { put, 5 },

  Future ! { get, self() },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end.


Protocol violation 
No 'reply' message.


Requests go unanswered.



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      Pid ! { reply, X },

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { put, 5 },

  Future ! { surprise, 10 },

  Future ! { get, self() },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end.


Unexpected Message 
Message is never handled.



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      Pid ! { reply, X },

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { put, "hello" },

  Future ! { get, self() },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end.


Payload Mismatch 
Client code expects an integer;


gets a string.



empty_future() ->

  receive

    { put, X } -> full_future(X)

  end.


full_future(X) ->

  receive

    { get, Pid } ->

      Pid ! { reply, X },

      full_future(X);

    { put, _ } ->

      erlang:error("Multiple writes")

  end.


main() ->

  Future = spawn(future, empty_future, []),

  Future ! { put, 5 },

  receive

    { reply, Result } ->

      io:fwrite("~w~n", [Result + 10])

  end,

  Future ! { get, self() }.

Self-deadlock 
Attempting to read a reply 
message before sending a 

request.



Mailbox Types: Type mailboxes with 
commutative regular expressions

Unreliable mailboxEmpty mailboxMailbox containing 
message with tag 'm'

Mailbox containing 
E or F

Mailbox containing 
E and F

Mailbox containing 
many Es

A mailbox type is a capability 
associated with a pattern:

!E
Key ideas: 
• Each mailbox has many send references, 

but precisely one receive reference

• Sends and receives must balance out

• Subtyping: relies on pattern inclusion

?E





A process calculus shows a snapshot of a concurrent 
system 

A programming language must be able to describe the 
program a user writes





Demo



Language Integration



Challenge 1: Static / Dynamic Distinction

Names 
•Process calculus: know runtime names a priori as they are part of a process

• In a PL: only dynamic: generated by the semantics.

•Distinction incompatible with alias control / deadlock-freedom techniques used by 
the mailbox calculus


Sequential composition? 
Variable rebinding?



Challenge 2: Name hygiene

A guard 'uses up' a variable; x must not be in 
scope afterwards


Easy to do in a linear system; more difficult in a 
multi-writer system where variables can be 
used more than once



Challenge 2: Name hygiene

...and must be robust to renaming / aliasing, and evaluation contexts!


Need: Only one variable name in scope for each runtime name



Challenge 3: Aliasing via Communication

Cannot allow communication to introduce 
unsafe aliases!



Quasi-Linear Types
• Quasi-linear typing: each reference 

can be used once per process as a 
full ("returnable") reference, but many 
times as a partial ("usable") reference


• Returnable references can be let-
bound; returned as part of an 
expression; and guarded upon


• Returnable reference must be the 
last occurrence of the name in the 
thread


• Usable references can only be used 
as the target of a send



Quasi-Linear Types: Example

?𝟙∙

!𝖱𝖾𝗉𝗅𝗒∘

?𝖱𝖾𝗉𝗅𝗒∙

Typable: Returnable use always last in scope (note that 'self' is 
consumed by 'guard' and rebound)



Quasi-Linear Types: Example

Untypable: variable 'x' appears after returnable occurrence

?𝖬𝖾𝗌𝗌𝖺𝗀𝖾
?(𝖬𝖾𝗌𝗌𝖺𝗀𝖾*)∙

!𝖬𝖾𝗌𝗌𝖺𝗀𝖾∘

!𝖬𝖾𝗌𝗌𝖺𝗀𝖾∘





Selected Typing Rules (Send)

Message with tag m has payload types TTarget must have usable mailbox type ! m

Payload types 
must match 

(usable)

Send term has unit type, no shared linear variables between target and each payload



Selected Typing Rules (Let)

Note: Type annotation optional

Ensure subject of let has returnable type

Sequencing of environments: ensures mailbox types combine correctly, 
ensure quasilinear well-formedness properties



Type Combination

Combining two send 
mailbox types: send both

Combining a send and receive: types 
balance out

Can combine two usable types, or a usable and a returnable type

Note: Not reflexive, nor symmetric



Selected Typing Rules (New and Spawn)

New mailbox: Returnable, empty 
receive capability.


Ensures all sends balanced by receives

Spawn: environment treated as usable 
(quasi-linearity is thread-local)



Metatheory

Theorem (Preservation):  
If  is reliable, , and , then .

Corollary (Mailbox Conformance): 
If  is reliable and , then . 

Nontrivial: requires extensive reasoning about contexts and quasi-
linearity

Γ Γ ⊢ 𝒞 𝒞 ⟶ 𝒟 Γ ⊢ 𝒟

Γ Γ ⊢ 𝒞 𝒞 /⟶* 𝒢[fail V]



Algorithmic Typing & 
Implementation



How do we write a typechecker?
The declarative system cannot be implemented as-is:


• Nondeterministic environment & type splitting

• Environment subtyping

• Pattern inclusion

Key idea: Produce a type environment and a 
set of pattern inclusion constraints 



Bidirectional Typing

Γ ⊢ M ⇒ A

Γ ⊢ M ⇐ A

"Under type environment , we can 
synthesise type A for term M"

Γ

"Under type environment , we can 
check that term M has type A"

Γ



Backwards Bidirectional Typing

P ⇒ τ ▸Θ; Φ "Synthesise type  for term P, 
producing type environment  and 

pattern inclusion constraints "

τ
Θ

Φ

"Check that term P has type type , 
producing type environment  and 

pattern inclusion constraints "

τ
Θ

Φ
P ⇐ τ ▸Θ; Φ

Key idea: Stay in checking mode as much as possible to 
preserve type information and propagate to variables


(originally introduced by Zeilberger, 2015)



Variable rule: a checking case, constructing a singleton environment



Synthesise unit type for the send term, producing 
combined environment Theta and the union of all 

constraint sets

Lookup payload types for 
message tag m

Check target can send 
message with tag m

Check payloads have 
correct types

Calculate disjoint combination of produced 
typing environments



Check that the body has 
type σ

Note: Revert to synthesis if x is not used in Q

Inspect produced type 
environment, see that x has type τ Ensure that  is returnableτ

Check that P has type τ Calculate algorithmic sequencing of 
environments



Metatheory

Theorem (Algorithmic Soundness) 
• If  and  is a usable solution for , then 

• If  and  is a usable solution for , then 


Conjecture (Algorithmic Completeness) 
If , then there exist some  and a usable solution  of  
such that  where .

P ⇐ τ ▸Θ; Φ Ξ Φ Ξ(Θ) ⊢ Ξ(P) : Ξ(τ)
P ⇒ τ ▸Θ; Φ Ξ Φ Ξ(Θ) ⊢ Ξ(P) : Ξ(τ)

Γ ⊢ M : A ↝ P Θ, Φ Ξ Φ
P ⇐ A ▸Θ; Φ Γ ≤ Ξ(Θ)



Implementation



Parsing / Lexing Desugaring IR Conversion

(A-normalisation) Pre-typing

Constraint 
Generation

Constraint 
Solving

Satisfiability 
Checking (Z3)

Pattern inclusion: closed form solution thanks to Hopkins & Kozen (1999)

Check consistency by translating into Presburger formulae & offloading to Z3



Wrapping up



Mailbox Types: Type the mailbox, not the process

First integration of mailbox types into a programming language: 
• Vital use of quasi-linear types to handle many-writer, single-reader pattern


Sound and complete algorithmic type system based on backwards 
bidirectional typing


Future work 

• Compilation (Ongoing, with Franek Sowul)

• Constraint-based co-contextual typing algorithm

• More sophisticated alias analysis

• Tool integration (Erlang, Elixir...)

• Other many-writer paradigms (Publish-subscribe? Typestate?)


