
Special Delivery: Programming
with Mailbox Types
Simon Fowler, Simon J. Gay, Phil Trinder, and Franciszek Sowul
STARDUST Meeting, University of Kent 
12th September 2022

Channels Actors

• Communication is ordered and bidirectional

• Anonymous processes, multiple, named  
channel endpoints

• Easy to type; difficult to distribute

• Communication is unidirectional and possibly
unordered (selective receive)

• Named processes, associated with incoming
mailbox

• Easy to distribute; difficult to type

?Int.?Int.!Bool.End
!Int.!Int.?Bool.End

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 Pid ! { reply, X },

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { put, 5 },

 Future ! { get, self() },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end.

Future: Placeholder variable

Can be written once, read many
times

Multiple writes: error

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 Pid ! { reply, X },

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { put, 5 },

 Future ! { put, 10 },

 Future ! { get, self() },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end.

Protocol violation
Two 'put' messages.

Manifests as a runtime error.

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 Pid ! { reply, X },

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { get, self() },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end.

Protocol violation
No 'put' message.

Future never resolved.

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { put, 5 },

 Future ! { get, self() },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end.

Protocol violation
No 'reply' message.

Requests go unanswered.

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 Pid ! { reply, X },

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { put, 5 },

 Future ! { surprise, 10 },

 Future ! { get, self() },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end.

Unexpected Message
Message is never handled.

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 Pid ! { reply, X },

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { put, "hello" },

 Future ! { get, self() },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end.

Payload Mismatch
Client code expects an integer;

gets a string.

empty_future() ->

 receive

 { put, X } -> full_future(X)

 end.

full_future(X) ->

 receive

 { get, Pid } ->

 Pid ! { reply, X },

 full_future(X);

 { put, _ } ->

 erlang:error("Multiple writes")

 end.

main() ->

 Future = spawn(future, empty_future, []),

 Future ! { put, 5 },

 receive

 { reply, Result } ->

 io:fwrite("~w~n", [Result + 10])

 end,

 Future ! { get, self() }.

Self-deadlock
Attempting to read a reply
message before sending a

request.

Mailbox Types: Type mailboxes with
commutative regular expressions

Unreliable mailboxEmpty mailboxMailbox containing 
message with tag 'm'

Mailbox containing 
E or F

Mailbox containing 
E and F

Mailbox containing 
many Es

A mailbox type is a capability
associated with a pattern:

!E
Key ideas:
• Each mailbox has many send references,

but precisely one receive reference

• Sends and receives must balance out

• Subtyping: relies on pattern inclusion

?E

A process calculus shows a snapshot of a concurrent
system

A programming language must be able to describe the
program a user writes

Demo

Language Integration

Challenge 1: Static / Dynamic Distinction

Names
•Process calculus: know runtime names a priori as they are part of a process

• In a PL: only dynamic: generated by the semantics.

•Distinction incompatible with alias control / deadlock-freedom techniques used by
the mailbox calculus

Sequential composition?
Variable rebinding?

Challenge 2: Name hygiene

A guard 'uses up' a variable; x must not be in
scope afterwards

Easy to do in a linear system; more difficult in a
multi-writer system where variables can be
used more than once

Challenge 2: Name hygiene

...and must be robust to renaming / aliasing, and evaluation contexts!

Need: Only one variable name in scope for each runtime name

Challenge 3: Aliasing via Communication

Cannot allow communication to introduce
unsafe aliases!

Quasi-Linear Types
• Quasi-linear typing: each reference

can be used once per process as a
full ("returnable") reference, but many
times as a partial ("usable") reference

• Returnable references can be let-
bound; returned as part of an
expression; and guarded upon

• Returnable reference must be the
last occurrence of the name in the
thread

• Usable references can only be used
as the target of a send

Quasi-Linear Types: Example

?𝟙∙

!𝖱𝖾𝗉𝗅𝗒∘

?𝖱𝖾𝗉𝗅𝗒∙

Typable: Returnable use always last in scope (note that 'self' is
consumed by 'guard' and rebound)

Quasi-Linear Types: Example

Untypable: variable 'x' appears after returnable occurrence

?𝖬𝖾𝗌𝗌𝖺𝗀𝖾
?(𝖬𝖾𝗌𝗌𝖺𝗀𝖾*)∙

!𝖬𝖾𝗌𝗌𝖺𝗀𝖾∘

!𝖬𝖾𝗌𝗌𝖺𝗀𝖾∘

Selected Typing Rules (Send)

Message with tag m has payload types TTarget must have usable mailbox type ! m

Payload types
must match

(usable)

Send term has unit type, no shared linear variables between target and each payload

Selected Typing Rules (Let)

Note: Type annotation optional

Ensure subject of let has returnable type

Sequencing of environments: ensures mailbox types combine correctly,
ensure quasilinear well-formedness properties

Type Combination

Combining two send
mailbox types: send both

Combining a send and receive: types
balance out

Can combine two usable types, or a usable and a returnable type

Note: Not reflexive, nor symmetric

Selected Typing Rules (New and Spawn)

New mailbox: Returnable, empty
receive capability.

Ensures all sends balanced by receives

Spawn: environment treated as usable
(quasi-linearity is thread-local)

Metatheory

Theorem (Preservation):  
If is reliable, , and , then .

Corollary (Mailbox Conformance): 
If is reliable and , then . 

Nontrivial: requires extensive reasoning about contexts and quasi-
linearity

Γ Γ ⊢ 𝒞 𝒞 ⟶ 𝒟 Γ ⊢ 𝒟

Γ Γ ⊢ 𝒞 𝒞 /⟶* 𝒢[fail V]

Algorithmic Typing &
Implementation

How do we write a typechecker?
The declarative system cannot be implemented as-is:

• Nondeterministic environment & type splitting

• Environment subtyping

• Pattern inclusion

Key idea: Produce a type environment and a
set of pattern inclusion constraints

Bidirectional Typing

Γ ⊢ M ⇒ A

Γ ⊢ M ⇐ A

"Under type environment , we can
synthesise type A for term M"

Γ

"Under type environment , we can
check that term M has type A"

Γ

Backwards Bidirectional Typing

P ⇒ τ ▸Θ; Φ "Synthesise type for term P,
producing type environment and

pattern inclusion constraints "

τ
Θ

Φ

"Check that term P has type type ,
producing type environment and

pattern inclusion constraints "

τ
Θ

Φ
P ⇐ τ ▸Θ; Φ

Key idea: Stay in checking mode as much as possible to
preserve type information and propagate to variables

(originally introduced by Zeilberger, 2015)

Variable rule: a checking case, constructing a singleton environment

Synthesise unit type for the send term, producing
combined environment Theta and the union of all

constraint sets

Lookup payload types for
message tag m

Check target can send
message with tag m

Check payloads have
correct types

Calculate disjoint combination of produced
typing environments

Check that the body has
type σ

Note: Revert to synthesis if x is not used in Q

Inspect produced type
environment, see that x has type τ Ensure that is returnableτ

Check that P has type τ Calculate algorithmic sequencing of
environments

Metatheory

Theorem (Algorithmic Soundness)
• If and is a usable solution for , then

• If and is a usable solution for , then

Conjecture (Algorithmic Completeness)
If , then there exist some and a usable solution of
such that where .

P ⇐ τ ▸Θ; Φ Ξ Φ Ξ(Θ) ⊢ Ξ(P) : Ξ(τ)
P ⇒ τ ▸Θ; Φ Ξ Φ Ξ(Θ) ⊢ Ξ(P) : Ξ(τ)

Γ ⊢ M : A ↝ P Θ, Φ Ξ Φ
P ⇐ A ▸Θ; Φ Γ ≤ Ξ(Θ)

Implementation

Parsing / Lexing Desugaring IR Conversion

(A-normalisation) Pre-typing

Constraint
Generation

Constraint
Solving

Satisfiability
Checking (Z3)

Pattern inclusion: closed form solution thanks to Hopkins & Kozen (1999)

Check consistency by translating into Presburger formulae & offloading to Z3

Wrapping up

Mailbox Types: Type the mailbox, not the process

First integration of mailbox types into a programming language:
• Vital use of quasi-linear types to handle many-writer, single-reader pattern

Sound and complete algorithmic type system based on backwards
bidirectional typing

Future work

• Compilation (Ongoing, with Franek Sowul)

• Constraint-based co-contextual typing algorithm

• More sophisticated alias analysis

• Tool integration (Erlang, Elixir...)

• Other many-writer paradigms (Publish-subscribe? Typestate?)

